TY - JOUR
T1 - New perspectives on the mutated NGLY1 enigma
AU - Tickotsky-Moskovitz, Nili
N1 - Publisher Copyright:
© 2015 Elsevier Ltd.
PY - 2015/11
Y1 - 2015/11
N2 - The enzyme N-glycanase 1 (NGLY1) is considered a component of the endoplasmic reticulum-associated degradation (ERAD) machinery and clinical manifestations of its dysfunction include global developmental delay, a movement disorder, peripheral neuropathy, liver disorders, microcephaly, diminished reflexes and seizures. Although several mutations in NGLY1 have been identified, the relation between the defected protein and the above described pathologies is yet unknown. We hypothesised that NGLY1 failure to degrade certain proteins may result in their accumulation and overexpression and used a systems biology approach to identify proteins that may be affected by NGLY1 deficiency. Genes that interact with the NGLY1 gene according to BioGRID database of physical and genetic interactions were analysed with STRING Protein-Protein interaction database. Network analysis identified FAF1 (Fas-Associated Factor 1), an apoptosis-potentiating protein, as a possible degradation substrate of NGLY1. Examination of normal tissue microarrays demonstrated that FAF1-to-NGLY1 ratio is maximal (more than 3:1) in skeletal muscle and brain tissues microarrays. This evidence may explain the pathologies in brain and muscle tissues of patients with mutated NGLY1. To test this hypothesis, laboratory studies that will assess if FAF1 protein is overexpressed in tissues of patients with mutated NGLY1 are required.
AB - The enzyme N-glycanase 1 (NGLY1) is considered a component of the endoplasmic reticulum-associated degradation (ERAD) machinery and clinical manifestations of its dysfunction include global developmental delay, a movement disorder, peripheral neuropathy, liver disorders, microcephaly, diminished reflexes and seizures. Although several mutations in NGLY1 have been identified, the relation between the defected protein and the above described pathologies is yet unknown. We hypothesised that NGLY1 failure to degrade certain proteins may result in their accumulation and overexpression and used a systems biology approach to identify proteins that may be affected by NGLY1 deficiency. Genes that interact with the NGLY1 gene according to BioGRID database of physical and genetic interactions were analysed with STRING Protein-Protein interaction database. Network analysis identified FAF1 (Fas-Associated Factor 1), an apoptosis-potentiating protein, as a possible degradation substrate of NGLY1. Examination of normal tissue microarrays demonstrated that FAF1-to-NGLY1 ratio is maximal (more than 3:1) in skeletal muscle and brain tissues microarrays. This evidence may explain the pathologies in brain and muscle tissues of patients with mutated NGLY1. To test this hypothesis, laboratory studies that will assess if FAF1 protein is overexpressed in tissues of patients with mutated NGLY1 are required.
UR - http://www.scopus.com/inward/record.url?scp=84946490327&partnerID=8YFLogxK
U2 - 10.1016/j.mehy.2015.07.019
DO - 10.1016/j.mehy.2015.07.019
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 26228302
AN - SCOPUS:84946490327
SN - 0306-9877
VL - 85
SP - 584
EP - 585
JO - Medical Hypotheses
JF - Medical Hypotheses
IS - 5
ER -