New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements

Inbar Yariv, Menashe Haddad, Hamootal Duadi, Menachem Motiei, Dror Fixler

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Physiological substances pose a challenge for researchers since their optical properties change constantly according to their physiological state. Examination of those substances noninvasively can be achieved by different optical methods with high sensitivity. Our research suggests the application of a novel noninvasive nanophotonics technique, ie, iterative multi-plane optical property extraction (IMOPE) based on reflectance measurements, for tissue viability examination and gold nanorods (GNRs) and blood flow detection. The IMOPE model combines an experimental setup designed for recording light intensity images with the multi-plane iterative Gerchberg-Saxton algorithm for reconstructing the reemitted light phase and calculating its standard deviation (STD). Changes in tissue composition affect its optical properties which results in changes in the light phase that can be measured by its STD. We have demonstrated this new concept of correlating the light phase STD and the optical properties of a substance, using transmission measurements only. This paper presents, for the first time, reflectance based IMOPE tissue viability examination, producing a decrease in the computed STD for older tissues, as well as investigating their organic material absorption capability. Finally, differentiation of the femoral vein from adjacent tissues using GNRs and the detection of their presence within blood circulation and tissues are also presented with high sensitivity (better than computed tomography) to low quantities of GNRs (<3 mg).

Original languageEnglish
Pages (from-to)5237-5244
Number of pages8
JournalInternational Journal of Nanomedicine
Volume11
DOIs
StatePublished - 11 Oct 2016

Bibliographical note

Publisher Copyright:
© 2016 Yariv et al.

Keywords

  • Blood vessel
  • Gerchberg-saxton
  • Gold nanorods
  • Optical properties
  • Reflectance
  • Scattering
  • Tissue viability

Fingerprint

Dive into the research topics of 'New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements'. Together they form a unique fingerprint.

Cite this