Abstract
The low-frequency vibrational (LFV) modes of biomolecules reflect specific intramolecular and intermolecular thermally induced fluctuations that are driven by external perturbations, such as ligand binding, protein interaction, electron transfer, and enzymatic activity. Large efforts have been invested over the years to develop methods to access the LFV modes due to their importance in the studies of the mechanisms and biological functions of biomolecules. Here, we present a method to measure the LFV modes of biomolecules based on Raman spectroscopy that combines volume holographic filters with a single-stage spectrometer, to obtain high signal-to-noise-ratio spectra in short acquisition times. We show that this method enables LFV mode characterization of biomolecules even in a hydrated environment. The measured spectra exhibit distinct features originating from intra- and/or intermolecular collective motion and lattice modes. The observed modes are highly sensitive to the overall structure, size, long-range order, and configuration of the molecules, as well as to their environment. Thus, the LFV Raman spectrum acts as a fingerprint of the molecular structure and conformational state of a biomolecule. The comprehensive method we present here is widely applicable, thus enabling high-throughput study of LFV modes of biomolecules.
Original language | English |
---|---|
Pages (from-to) | 1232-1240 |
Number of pages | 9 |
Journal | ACS Omega |
Volume | 2 |
Issue number | 3 |
DOIs | |
State | Published - 31 Mar 2017 |
Bibliographical note
Funding Information:We thank the Israel Strategic Alternative Energy Foundation (I-SAEF) and the “Tashtiyot Program” of the Israeli Ministry of Science & Technology for funding this research. We would also like to acknowledge the Israel National Nanotechnology Initiative for providing support through a Focal Technology Area project, FTA grant number 458004. Authors also like to thank the European Research Council, ERC-STG grant number 309600 (D.G.), for funding the research.
Publisher Copyright:
© 2017 American Chemical Society.