Neuronal regulated ire-1-dependent mRNA decay controls germline differentiation in Caenorhabditis elegans

Mor Levi-Ferber, Rewayd Shalash, Adrien Le-Thomas, Yehuda Salzberg, Maor Shurgi, Jennifer Ic Benichou, Avi Ashkenazi, Sivan Henis-Korenblit

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Understanding the molecular events that regulate cell pluripotency versus acquisition of differentiated somatic cell fate is fundamentally important. Studies in Caenorhabditis elegans demonstrate that knockout of the germline-specific translation repressor gld-1 causes germ cells within tumorous gonads to form germline-derived teratoma. Previously we demonstrated that endoplasmic reticulum (ER) stress enhances this phenotype to suppress germline tumor progression(Levi-Ferber et al., 2015). Here, we identify a neuronal circuit that non-autonomously suppresses germline differentiation and show that it communicates with the gonad via the neurotransmitter serotonin to limit somatic differentiation of the tumorous germline. ER stress controls this circuit through regulated inositol requiring enzyme-1 (IRE-1)-dependent mRNA decay of transcripts encoding the neuropeptide FLP-6. Depletion of FLP-6 disrupts the circuit’s integrity and hence its ability to prevent somatic-fate acquisition by germline tumor cells. Our findings reveal mechanistically how ER stress enhances ectopic germline differentiation and demonstrate that regulated Ire1-dependent decay can affect animal physiology by controlling a specific neuronal circuit.

Original languageEnglish
Article numbere65644
JournaleLife
Volume10
DOIs
StatePublished - 3 Sep 2021

Bibliographical note

Funding Information:
Some nematode strains were provided by the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources and by Dr. Shohei Mitani, National Bioresource Project for the nematode, Tokyo Women’s Medical University School of Medicine, Japan. We thank Prof. Cori Bargmann (Rockefeller University, USA) for the HisCl-related strains as well as for the Cre-Lox-specific knockouts of tph-1. We thank Prof. Kang Shen (Stanford University, USA) for IRE-1 structure function strains (wy782, wy762). We thank Prof. Hannes E Bulow (Albert Einstein College of Medicine, USA) for helpful discussions. We thank Prof. Dayong Wang (Southeast University, China) for the flp-6 rescue in ADF construct (Psrh-142::flp-6). We thank Prof. Chris Li (The City College of New York, USA) for flp-4(yn35) mutant strain. This work was supported by the Israel Science Foundation (grant number 1571/15 to SHK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Funding Information:
Some nematode strains were provided by the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources and by Dr. Shohei Mitani, National Bioresource Project for the nematode, Tokyo Women’s Medical University School of Medicine, Japan. We thank Prof. Cori Bargmann (Rockefeller University, USA) for the HisCl-related strains as well as for the Cre-Lox- specific knockouts of tph-1. We thank Prof. Kang Shen (Stanford University, USA) for IRE-1 structure function strains (wy782, wy762). We thank Prof. Hannes E Bulow (Albert Einstein College of Medicine, USA) for helpful discussions. We thank Prof. Dayong Wang (Southeast University, China) for the flp-6 rescue in ADF construct (Psrh-142::flp-6). We thank Prof. Chris Li (The City College of New York, USA) for flp-4(yn35) mutant strain. This work was supported by the Israel Science Foundation (grant number 1571/15 to SHK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Publisher Copyright:
© Levi-Ferber et al.

Fingerprint

Dive into the research topics of 'Neuronal regulated ire-1-dependent mRNA decay controls germline differentiation in Caenorhabditis elegans'. Together they form a unique fingerprint.

Cite this