Network link prediction by global silencing of indirect correlations

Baruch Barzel, Albert László Barabási

Research output: Contribution to journalArticlepeer-review

214 Scopus citations

Abstract

Predictions of physical and functional links between cellular components are often based on correlations between experimental measurements, such as gene expression. However, correlations are affected by both direct and indirect paths, confounding our ability to identify true pairwise interactions. Here we exploit the fundamental properties of dynamical correlations in networks to develop a method to silence indirect effects. The method receives as input the observed correlations between node pairs and uses a matrix transformation to turn the correlation matrix into a highly discriminative silenced matrix, which enhances only the terms associated with direct causal links. Against empirical data for Escherichia coli regulatory interactions, the method enhanced the discriminative power of the correlations by twofold, yielding ≥50% predictive improvement over traditional correlation measures and 6% over mutual information. Overall this silencing method will help translate the abundant correlation data into insights about a system's interactions, with applications ranging from link prediction to inferring the dynamical mechanisms governing biological networks.

Original languageEnglish
Pages (from-to)720-725
Number of pages6
JournalNature Biotechnology
Volume31
Issue number8
DOIs
StatePublished - Aug 2013
Externally publishedYes

Bibliographical note

Funding Information:
We thank B. Alipanahi and B. Frey for their valuable insights, A. Sharma, F. Simini, J. Menche, S. Rabello, G. Ghoshal, Y.-Y. Liu, T. Jia, M. Pósfai, C. Song, Y.-Y. Ahn, N. Blumm, D. Wang, Z. Qu, M. Schich, D. Ghiassian, S. Gil, P. Hövel, J. Gao, M. Kitsak, M. Martino, R. Sinatra, G. Tsekenis, L. Chi, B. Gabriel, Q. Jin and Y. Li for discussions, and S.S. Aleva, S. Morrison, J. De Nicolo and A. Pawling for their support. This work was supported by the US National Institutes of Health (NIH), Center of Excellence of Genomic Science (CEGS), Grant number NIH CEGS 1P50HG4233; and the NIH, award number 1U01HL108630-01; DARPA Grant Number 11645021; DARPA Social Media in Strategic Communications project under agreement number W911NF-12-C-0028; the Network Science Collaborative Technology Alliance sponsored by the US Army Research Laboratory under agreement number NS-CTA W911NF-09-02-0053; the Office of Naval Research under agreement number N000141010968; and the Defense Threat Reduction Agency awards WMD BRBAA07-J-2-0035 and BRBAA08-Per4-C-2-0033.

Funding

We thank B. Alipanahi and B. Frey for their valuable insights, A. Sharma, F. Simini, J. Menche, S. Rabello, G. Ghoshal, Y.-Y. Liu, T. Jia, M. Pósfai, C. Song, Y.-Y. Ahn, N. Blumm, D. Wang, Z. Qu, M. Schich, D. Ghiassian, S. Gil, P. Hövel, J. Gao, M. Kitsak, M. Martino, R. Sinatra, G. Tsekenis, L. Chi, B. Gabriel, Q. Jin and Y. Li for discussions, and S.S. Aleva, S. Morrison, J. De Nicolo and A. Pawling for their support. This work was supported by the US National Institutes of Health (NIH), Center of Excellence of Genomic Science (CEGS), Grant number NIH CEGS 1P50HG4233; and the NIH, award number 1U01HL108630-01; DARPA Grant Number 11645021; DARPA Social Media in Strategic Communications project under agreement number W911NF-12-C-0028; the Network Science Collaborative Technology Alliance sponsored by the US Army Research Laboratory under agreement number NS-CTA W911NF-09-02-0053; the Office of Naval Research under agreement number N000141010968; and the Defense Threat Reduction Agency awards WMD BRBAA07-J-2-0035 and BRBAA08-Per4-C-2-0033.

FundersFunder number
US National Institutes of Health
National Institutes of Health1U01HL108630-01
Office of Naval ResearchN000141010968
National Human Genome Research InstituteP50HG004233
Defense Advanced Research Projects AgencyW911NF-12-C-0028, 11645021
Defense Threat Reduction AgencyBRBAA08-Per4-C-2-0033, WMD BRBAA07-J-2-0035
Army Research LaboratoryNS-CTA W911NF-09-02-0053

    Fingerprint

    Dive into the research topics of 'Network link prediction by global silencing of indirect correlations'. Together they form a unique fingerprint.

    Cite this