Network impact of a single-time-point microbial sample

Shir Ezra, Amir Bashan

Research output: Contribution to journalArticlepeer-review


The human microbiome plays a crucial role in determining our well-being and can significantly influence human health. The individualized nature of the microbiome may reveal host-specific information about the health state of the subject. In particular, the microbiome is an ecosystem shaped by a tangled network of species-species and host-species interactions. Thus, analysis of the ecological balance of microbial communities can provide insights into these underlying interrelations. However, traditional methods for network analysis require many samples, while in practice only a single-time-point microbial sample is available in clinical screening. Recently, a method for the analysis of a single-time-point sample, which evaluates its ‘network impact’ with respect to a reference cohort, has been applied to analyze microbial samples from women with Gestational Diabetes Mellitus. Here, we introduce different variations of the network impact approach and systematically study their performance using simulated ‘samples’ fabricated via the Generalized Lotka-Volttera model of ecological dynamics. We show that the network impact of a single sample captures the effect of the interactions between the species, and thus can be applied to anomaly detection of shuffled samples, which are ‘normal’ in terms of species abundance but ‘abnormal’ in terms of species-species interrelations. In addition, we demonstrate the use of the network impact in binary and multiclass classifications, where the reference cohorts have similar abundance profiles but different species-species interactions. Individualized analysis of the human microbiome has the potential to improve diagnosis and personalized treatments.

Original languageEnglish
Article numbere0301683
JournalPLoS ONE
Issue number5 May
StatePublished - May 2024

Bibliographical note

Publisher Copyright:
© 2024 Ezra, Bashan. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Dive into the research topics of 'Network impact of a single-time-point microbial sample'. Together they form a unique fingerprint.

Cite this