Network Design Model with Evacuation Constraints under Uncertainty

Oren E. Nahum, Yuval Hadas, Riccardo Rossi, Massimiliano Gastaldi, Gregorio Gecchele

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Nepal earthquake, have shown the need for quick response evacuation and assistance routes. Evacuation routes are, mostly, based on the capacities of the roads network. However, in extreme cases, such as earthquakes, roads network infrastructure may adversely affected, and may not supply their required capacities. If for various situations, the potential damage for critical roads can be identify in advance, it is possible to develop an evacuation model, that can be used in various situations to plan the network structure in order to provide fast and safe evacuation. This paper focuses on the development of a model for the design of an optimal evacuation network which simultaneously minimizes construction costs and evacuation time. The model takes into consideration infrastructures vulnerability (as a stochastic function which is dependent on the event location and magnitude), road network, transportation demand and evacuation areas. The paper presents a mathematic model for the presented problem. However, since an optimal solution cannot be found within a reasonable timeframe, a heuristic model is presented as well.

Original languageEnglish
Pages (from-to)489-498
Number of pages10
JournalTransportation Research Procedia
Volume22
DOIs
StatePublished - 2017

Bibliographical note

Publisher Copyright:
© 2017 The Authors. Published by Elsevier B.V.

Keywords

  • Evacuation
  • Evolutionary Algorithms
  • Heuristics
  • Multi-Objective Optimization

Fingerprint

Dive into the research topics of 'Network Design Model with Evacuation Constraints under Uncertainty'. Together they form a unique fingerprint.

Cite this