TY - JOUR
T1 - Near-Field Superdirectivity
T2 - An Analytical Perspective
AU - Levin, Dovid Y.
AU - Markovich-Golan, Shmulik
AU - Gannot, Sharon
N1 - Publisher Copyright:
© 2014 IEEE.
PY - 2021
Y1 - 2021
N2 - The gain achieved by a superdirective beamformer operating in a diffuse noise-field is significantly higher than the gain attainable with conventional delay-and-sum weights. A classical result states that for a compact linear array consisting of $N$ sensors which receives a plane-wave signal from the end-fire direction, the optimal superdirective gain approaches $N^2$. It has been noted that in the near-field regime higher gains can be attained. The gain can increase, in theory, without bound for increasing wavelength or decreasing source-receiver distance. We aim to address the phenomenon of near-field superdirectivity in a comprehensive manner. We derive the optimal performance for the limiting case of an infinitesimal-aperture array receiving a spherical-wave signal. This is done with the aid of a sequence of linear transformations. The resulting gain expression is a polynomial, which depends on the number of sensors employed, the wavelength, and the source-receiver distance. The resulting gain curves are optimal and outperform weights corresponding to other superdirectivity methods. The practical case of a finite-aperture array is discussed. We present conditions for which the gain of such an array would approach that predicted by the theory of the infinitesimal case. The white noise gain (WNG) metric of robustness is shown to increase in the near-field regime.
AB - The gain achieved by a superdirective beamformer operating in a diffuse noise-field is significantly higher than the gain attainable with conventional delay-and-sum weights. A classical result states that for a compact linear array consisting of $N$ sensors which receives a plane-wave signal from the end-fire direction, the optimal superdirective gain approaches $N^2$. It has been noted that in the near-field regime higher gains can be attained. The gain can increase, in theory, without bound for increasing wavelength or decreasing source-receiver distance. We aim to address the phenomenon of near-field superdirectivity in a comprehensive manner. We derive the optimal performance for the limiting case of an infinitesimal-aperture array receiving a spherical-wave signal. This is done with the aid of a sequence of linear transformations. The resulting gain expression is a polynomial, which depends on the number of sensors employed, the wavelength, and the source-receiver distance. The resulting gain curves are optimal and outperform weights corresponding to other superdirectivity methods. The practical case of a finite-aperture array is discussed. We present conditions for which the gain of such an array would approach that predicted by the theory of the infinitesimal case. The white noise gain (WNG) metric of robustness is shown to increase in the near-field regime.
KW - Superdirectivity
KW - array processing
KW - beamforming
KW - near-field
KW - white noise gain
UR - http://www.scopus.com/inward/record.url?scp=85103885725&partnerID=8YFLogxK
U2 - 10.1109/taslp.2021.3070686
DO - 10.1109/taslp.2021.3070686
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.systematicreview???
AN - SCOPUS:85103885725
SN - 2329-9290
VL - 29
SP - 1661
EP - 1674
JO - IEEE/ACM Transactions on Audio Speech and Language Processing
JF - IEEE/ACM Transactions on Audio Speech and Language Processing
M1 - 9395250
ER -