Naturally Derived Carbon Dots in Situ Confined Self-Healing and Breathable Hydrogel Monolith for Anomalous Diffusion-Driven Phytomedicine Release

Poushali Das, Sayan Ganguly, Arumugam Saravanan, Shlomo Margel, Aharon Gedanken, Seshasai Srinivasan, Amin Reza Rajabzadeh

Research output: Contribution to journalArticlepeer-review

72 Scopus citations

Abstract

Fluorescent nanocarbons are well-proficient nanomaterials because of their optical properties and surface engineering. Herein, Apium graveolens-derived carbon dots (ACDs) have been synthesized by a one-step hydrothermal process without using any surplus vigorous chemicals or ligands. ACDs were captured via an in situ gelation reaction to form a semi-interpenetrating polymer network system showing mechanical robustness, fluorescent behavior, and natural adhesivity. ACDs-reinforced hydrogels were tested against robust uniaxial stress, repeated mechanical stretching, thixotropy, low creep, and fast strain recovery, confirming their elastomeric sustainability. Moreover, the room-temperature self-healing behavior was observed for the ACDs-reinforced hydrogels, with a healing efficacy of more than 45%. Water imbibition through hydrogel surfaces was digitally monitored via "breathing" and "accelerated breathing" behaviors. The phytomedicine release from the hydrogels was tuned by the ACDs' microstructure regulatory activity, resulting in better control of the diffusion rate compared to conventional chemical hydrogels. Finally, the phytomedicine-loaded hydrogels were found to be excellent bactericidal materials eradicating more than 85% of Gram-positive and -negative bacteria. The delayed network rupturing, superstretchability, fluorescent self-healing, controlled release, and antibacterial behavior could make this material an excellent alternative to soft biomaterials and soft robotics. copy; 2022 American Chemical Society.

Original languageEnglish
Pages (from-to)5617-5633
Number of pages17
JournalACS Applied Bio Materials
Volume5
Issue number12
DOIs
StatePublished - 19 Dec 2022

Bibliographical note

Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.

Funding

The authors would like to acknowledge the support from the Natural Sciences and Engineering Research Council of Canada.

FundersFunder number
Natural Sciences and Engineering Research Council of Canada

    Keywords

    • carbon dots
    • fluorescent hydrogel
    • in situ gelation
    • phytomedicine release
    • self-healing

    Fingerprint

    Dive into the research topics of 'Naturally Derived Carbon Dots in Situ Confined Self-Healing and Breathable Hydrogel Monolith for Anomalous Diffusion-Driven Phytomedicine Release'. Together they form a unique fingerprint.

    Cite this