Abstract
The nuclear pore complex (NPC) employs the intrinsically disordered regions (IDRs) from a family of phenylalanine-glycine-rich nucleoporins (FG-Nups) to control nucleocytoplasmic transport. It has been a long-standing mystery how the IDR-mediated mass exchange can be rapid yet selective. Here, we use a computational microscope to show that nanocompartmentalization of IDR subdomains leads to a remarkably elaborate gating structure as programmed by the amino acid sequences. In particular, we reveal a heterogeneous permeability barrier that combines an inner ring barrier with two vestibular condensates. Throughout the NPC, we find a polarized electrostatic potential and a diffuse thermoreversible FG network featuring mosaic FG territories with low FG-FG pairing fraction. Our theoretical anatomy of the central transporter sheds light into the sequence-structure-function relationship of the FG-Nups and provides a picture of nucleocytoplasmic mass exchange that allows a reconciliation of transport efficiency and specificity.
Original language | English |
---|---|
Pages (from-to) | 219-231 |
Number of pages | 13 |
Journal | Biophysical Journal |
Volume | 118 |
Issue number | 1 |
DOIs | |
State | Published - 7 Jan 2020 |
Bibliographical note
Funding Information:I.S. and K.H. gratefully acknowledge funding from National Science Foundation Biological and Environmental Interactions of Nanoscale Materials 1833214 and National Institutes of Health National Cancer Institute R01 CA228272 . Y.R. would like to acknowledge support by grants from the Israel Science Foundation 178/16 and from the Israeli Centers for Research Excellence program of the Planning and Budgeting Committee 1902/12 .
Publisher Copyright:
© 2019 Biophysical Society