Abstract
In today's research area it is extremely important to assemble nanomaterials into electric devices at the nanoscale level due to the rapid expansion of nanotechnology in various fields. Designing a nanohybrid composed of gold nanoparticles (AuNPs) and red-emitting carbon dots (CDs) can be used to develop a fluorescence lifetime imaging (FLIM) based logic gate that can respond to multiple input parameters. The AuNPs are conjugated to CDs surfaces through a strong covalent linkage between them. These fluorescence lifetimes-based logic gates could be the new way to overcome the limitation of fluorescence intensity-based logic gates. The Au-CDs nanohybrid shows significant fluorescence quenching of pristine CDs after conjugation of gold nanoparticles. This quenched fluorescence can be recovered back by using a proper recovering agent giving us a reversible logic output. This nanohybrid can be used to construct complex logic functions as the fluorescence logic output is independent of concentration and excitation source.
Original language | English |
---|---|
Title of host publication | Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIX |
Editors | Dror Fixler, Ewa M. Goldys, Sebastian Wachsmann-Hogiu |
Publisher | SPIE |
ISBN (Electronic) | 9781510648234 |
DOIs | |
State | Published - 2022 |
Event | Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIX 2022 - Virtual, Online Duration: 20 Feb 2022 → 24 Feb 2022 |
Publication series
Name | Progress in Biomedical Optics and Imaging - Proceedings of SPIE |
---|---|
Volume | 11976 |
ISSN (Print) | 1605-7422 |
Conference
Conference | Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIX 2022 |
---|---|
City | Virtual, Online |
Period | 20/02/22 → 24/02/22 |
Bibliographical note
Publisher Copyright:Copyright © 2022 SPIE.
Keywords
- Carbon dots
- fluorescence lifetime imaging (FLIM)
- gold nanoparticles
- nano logic gate
- nanohybrids