Abstract
Stochastic Bloch equations which model the fluorescence of two-level molecules and atoms, NMR experiments, and Josephson junctions are investigated to illustrate the profound effect of multiplicative noise on the critical frequency of a dynamical system. Using exact solutions and the cumulant expansion we find two main effects: (i) even very weak noise may double or triple the number of critical frequencies, which is related to an instability of the system, and (ii) strong multiplicative noise may induce a nontrivial zero critical frequency thus wiping out the overdamped phase.
Original language | English |
---|---|
Article number | 030104 |
Journal | Physical Review E |
Volume | 80 |
Issue number | 3 |
DOIs | |
State | Published - 14 Sep 2009 |