Abstract
Applied cryptographic protocols have to meet a rich set of security requirements under diverse environments and against diverse adversaries. However, currently used security specifications, based on either simulation [11, 27] (e.g., ‘ideal functionality’ in UC) or games [8, 29], are monolithic, combining together different aspects of protocol requirements, environment and assumptions. Such security specifications are complex, error-prone, and foil reusability, modular analysis and incremental design. We present the Modular Security Specifications (MoSS) framework, which cleanly separates the security requirements (goals) which a protocol should achieve, from the models (assumptions) under which each requirement should be ensured. This modularity allows us to reuse individual models and requirements across different protocols and tasks, and to compare protocols for the same task, either under different assumptions or satisfying different sets of requirements. MoSS is flexible and extendable, e.g., it can support both asymptotic and concrete definitions for security. So far, we confirmed the applicability of MoSS to two applications: secure broadcast protocols and PKI schemes.
Original language | English |
---|---|
Title of host publication | Advances in Cryptology – CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Proceedings |
Editors | Tal Malkin, Chris Peikert |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 33-63 |
Number of pages | 31 |
ISBN (Print) | 9783030842512 |
DOIs | |
State | Published - 2021 |
Event | 41st Annual International Cryptology Conference, CRYPTO 2021 - Virtual, Online Duration: 16 Aug 2021 → 20 Aug 2021 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 12827 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 41st Annual International Cryptology Conference, CRYPTO 2021 |
---|---|
City | Virtual, Online |
Period | 16/08/21 → 20/08/21 |
Bibliographical note
Publisher Copyright:© 2021, International Association for Cryptologic Research.
Funding
Acknowledgments. We thank the anonymous reviewers for their insightful and constructive feedback; among other things, it helped us improve the definitions of models and requirements. We also thank Yuval Ishay, Sergio Rajsbaum, Juan Garay and Iftach Haitner for their comments and suggestions on earlier drafts of the paper. Special thanks to Oded Goldreich for his encouragement and for suggesting a simplified way to ensure total polynomial time, which was the basis for our current ‘interactive polytime adversary’ (Sect. 7.3). Part of the work was done while Ewa Syta had a visiting position at University of Connecticut. This work was partially supported by the Comcast Corporation. The opinions expressed are of the authors and not of their university or funding sources. We thank the anonymous reviewers for their insightful and constructive feedback; among other things, it helped us improve the definitions of models and requirements. We also thank Yuval Ishay, Sergio Rajsbaum, Juan Garay and Iftach Haitner for their comments and suggestions on earlier drafts of the paper. Special thanks to Oded Goldreich for his encouragement and for suggesting a simplified way to ensure total polynomial time, which was the basis for our current ?interactive polytime adversary? (Sect. 7.3). Part of the work was done while Ewa Syta had a visiting position at University of Connecticut. This work was partially supported by the Comcast Corporation. The opinions expressed are of the authors and not of their university or funding sources.
Funders | Funder number |
---|---|
University of Connecticut | |
Comcast |