Molybdenum Disulfide-Wrapped Carbon Nanotube-Reduced Graphene Oxide (CNT/MoS2-rGO) Nanohybrids for Excellent and Fast Removal of Electromagnetic Interference Pollution

Jagdees Prasad, Ashwani Kumar Singh, Amar Nath Yadav, Ajit Kumar, Monika Tomar, Amit Srivastava, Pramod Kumar, Vinay Gupta, Kedar Singh

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

Electromagnetic interference (EMI) pollution has now become a subject of great concern with the rapid development of delicate electronic equipment in commercial, civil, and military operations. There has been a surge in pursuit of light-weight, adaptable, effective, and efficient EMI screening materials in recent years. The present article addresses a simple and sensitive approach to synthesize a core/shell carbon nanotube/MoS2 heterostructure supported on reduced graphene oxide (CNT/MoS2-rGO nanohybrid) as an efficient electromagnetic shielding material. The structural and morphological characteristics were accessed through X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy, augmenting successful formation of the CNT/MoS2-rGO nanohybrid. The shielding performance of the as-synthesized samples has been accessed in a wide frequency range of 8-12 GHz. A CNT/MoS2-rGO nanohybrid demonstrates a better EMI shielding performance in comparison to MoS2 nanosheets and MoS2-rGO nanohybrid individually. The CNT/MoS2-rGO nanohybrid having a thickness ∼1 mm shows excellent total shielding effectiveness (SET) as high as 40 dB, whereas MoS2 and MoS2-rGO hybrid lags far, with the average value of SET as 7 and 28 dB, respectively. It also demonstrates that the nanohybrid CNT/MoS2-rGO shields the EM radiation by means of absorption through several functional defects and multiple interfaces present in the heterostructure. Herein, we envision that our results provide a simple and innovative approach to synthesize the light-weight CNT/MoS2-rGO nanohybrid having flexibility and high shielding efficiency and widen its practical applications in stealth technology.

Original languageEnglish
Pages (from-to)40828-40837
Number of pages10
JournalACS applied materials & interfaces
Volume12
Issue number36
DOIs
StatePublished - 9 Sep 2020
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2020 American Chemical Society.

Keywords

  • dielectric loss
  • electromagnetic interference
  • electron hopping
  • graphene
  • hybrid material

Fingerprint

Dive into the research topics of 'Molybdenum Disulfide-Wrapped Carbon Nanotube-Reduced Graphene Oxide (CNT/MoS2-rGO) Nanohybrids for Excellent and Fast Removal of Electromagnetic Interference Pollution'. Together they form a unique fingerprint.

Cite this