Modular glycosphere assays for high-throughput functional characterization of influenza viruses

Sven N. Hobbie, Karthik Viswanathan, Ido Bachelet, Udayanath Aich, Zachary Shriver, Vidya Subramanian, Rahul Raman, Ram Sasisekharan

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Background: The ongoing global efforts to control influenza epidemics and pandemics require high-throughput technologies to detect, quantify, and functionally characterize viral isolates. The 2009 influenza pandemic as well as the recent in-vitro selection of highly transmissible H5N1 variants have only increased existing concerns about emerging influenza strains with significantly enhanced human-to-human transmissibility. High-affinity binding of the virus hemagglutinin to human receptor glycans is a highly sensitive and stringent indicator of host adaptation and virus transmissibility. The surveillance of receptor-binding characteristics can therefore provide a strong additional indicator for the relative hazard imposed by circulating and newly emerging influenza strains.Results: Streptavidin-coated microspheres were coated with selected biotinylated glycans to mimic either human or avian influenza host-cell receptors. Such glycospheres were used to selectively capture influenza virus of diverse subtypes from a variety of samples. Bound virus was then detected by fluorescently labelled antibodies and analyzed by quantitative flow cytometry. Recombinant hemagglutinin, inactivated virus, and influenza virions were captured and analyzed with regards to receptor specificity over a wide range of analyte concentration. High-throughput analyses of influenza virus produced dose-response curves that allow for functional assessment of relative receptor affinity and thus transmissibility.Conclusions: Modular glycosphere assays for high-throughput functional characterization of influenza viruses introduce an important tool to augment the surveillance of clinical and veterinarian influenza isolates with regards to receptor specificity, host adaptation, and virus transmissibility.

Original languageEnglish
Article number34
JournalBMC Biotechnology
Volume13
DOIs
StatePublished - 15 Apr 2013
Externally publishedYes

Bibliographical note

Funding Information:
Influenza A strains SM15 and SM19 were kindly provided by Julian Tang, Evelyn Koay, and Paul Tambyah of the National University Health System (NUHS), Singapore. Avicel was a kind gift of FMC BioPolymer. The authors thank Ong Waichung and Loh Siew Chin for outstanding technical assistance. This research was supported by the National Research Foundation Singapore through the Singapore-MIT Alliance for Research and Technology's Infectious Diseases research programme.

Funding

Influenza A strains SM15 and SM19 were kindly provided by Julian Tang, Evelyn Koay, and Paul Tambyah of the National University Health System (NUHS), Singapore. Avicel was a kind gift of FMC BioPolymer. The authors thank Ong Waichung and Loh Siew Chin for outstanding technical assistance. This research was supported by the National Research Foundation Singapore through the Singapore-MIT Alliance for Research and Technology's Infectious Diseases research programme.

FundersFunder number
Singapore-MIT Alliance for Research and Technology's Infectious Diseases
National Institute of General Medical SciencesR37GM057073
National Research Foundation Singapore

    Fingerprint

    Dive into the research topics of 'Modular glycosphere assays for high-throughput functional characterization of influenza viruses'. Together they form a unique fingerprint.

    Cite this