Modelling urban growth patterns

Hernán A. Makse, Shlomo Havlin, H. Eugene Stanley

Research output: Contribution to journalArticlepeer-review

359 Scopus citations

Abstract

Cities grow in a way that might be expected to resemble the growth of two-dimensional aggregates of particles, and this has led to recent attempts1–3 to model urban growth using ideas from the statistical physics of clusters. In particular, the model of diffusion-limited aggregation4,5 (DLA) has been invoked to rationalize the apparently fractal nature of urban morphologies1. The DLA model predicts that there should exist only one large fractal cluster, which is almost perfectly screened from incoming ‘development units’ (representing, for example, people, capital or resources), so that almost all of the cluster growth takes place at the tips of the cluster’s branches. Here we show that an alternative model, in which development units are correlated rather than being added to the cluster at random, is better able to reproduce the observed morphology of cities and the area distribution of sub-clusters (‘towns’) in an urban system, and can also describe urban growth dynamics. Our physical model, which corresponds to the correlated percolation model6–8 in the presence of a density gradient9, is motivated by the fact that in urban areas development attracts further development. The model offers the possibility of predicting the global properties (such as scaling behaviour) of urban morphologies.

Original languageEnglish
Pages (from-to)608-612
Number of pages5
JournalNature
Volume377
Issue number6550
DOIs
StatePublished - 19 Oct 1995

Fingerprint

Dive into the research topics of 'Modelling urban growth patterns'. Together they form a unique fingerprint.

Cite this