Modeling complexity in biology

Yoram Louzoun, Sorin Solomon, Henri Atlan, Irun R. Cohen

Research output: Contribution to journalArticlepeer-review

26 Scopus citations


Biological systems, unlike physical or chemical systems, are characterized by the very inhomogeneous distribution of their components. The immune system, in particular, is notable for self-organizing its structure. Classically, the dynamics of natural systems have been described using differential equations. But, differential equation models fail to account for the emergence of large-scale inhomogeneities and for the influence of inhomogeneity on the overall dynamics of biological systems. Here, we show that a microscopic simulation methodology enables us to model the emergence of large-scale objects and to extend the scope of mathematical modeling in biology. We take a simple example from immunology and illustrate that the methods of classical differential equations and microscopic simulation generate contradictory results. Microscopic simulations generate a more faithful approximation of the reality of the immune system.

Original languageEnglish
Pages (from-to)242-252
Number of pages11
JournalPhysica A: Statistical Mechanics and its Applications
Issue number1-2
StatePublished - 1 Aug 2001
Externally publishedYes


  • Emergency
  • Germinal centers
  • Inhomogeneity
  • Microscopic simulation
  • ODE


Dive into the research topics of 'Modeling complexity in biology'. Together they form a unique fingerprint.

Cite this