Abstract
A new type of silicon MOSFET transistor, coupling both electronic and optical properties, is developed in order to overcome the indirect silicon bandgap constraint, and to serve as a future light emitting device in NIR [0.8-2μm] range, as part of a new building block in integrated circuits allowing ultra-high speed processors. Such QW structure enables discrete energy levels for light emission. Model and simulations are presented.
Original language | English |
---|---|
Title of host publication | 2016 IEEE International Conference on the Science of Electrical Engineering, ICSEE 2016 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781509021529 |
DOIs | |
State | Published - 4 Jan 2017 |
Event | 2016 IEEE International Conference on the Science of Electrical Engineering, ICSEE 2016 - Eilat, Israel Duration: 16 Nov 2016 → 18 Nov 2016 |
Publication series
Name | 2016 IEEE International Conference on the Science of Electrical Engineering, ICSEE 2016 |
---|
Conference
Conference | 2016 IEEE International Conference on the Science of Electrical Engineering, ICSEE 2016 |
---|---|
Country/Territory | Israel |
City | Eilat |
Period | 16/11/16 → 18/11/16 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.
Keywords
- Electroluminescence
- SOI MOSFET
- quantum well