Abstract
Video understanding usually requires expensive computation that prohibits its deployment, yet videos contain significant spatiotemporal redundancy that can be exploited. In particular, operating directly on the motion vectors and residuals in the compressed video domain can significantly accelerate the compute, by not using the raw videos which demand colossal storage capacity. Existing methods approach this task as a multiple modalities problem. In this paper we are approaching the task in a completely different way; we are looking at the data from the compressed stream as a one unit clip and propose that the residual frames can replace the original RGB frames from the raw domain. Furthermore, we are using teacher-student method to aid the network in the compressed domain to mimic the teacher network in the raw domain. We show experiments on three leading datasets (HMDB51, UCF1, and Kinetics) that approach state-of-the-art accuracy on raw video data by using compressed data. Our model MFCD-Net outperforms prior methods in the compressed domain and more importantly, our model has 11X fewer parameters and 3X fewer Flops, dramatically improving the efficiency of video recognition inference. This approach enables applying neural networks exclusively in the compressed domain without compromising accuracy while accelerating performance.
Original language | English |
---|---|
Title of host publication | Proceedings - 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020 |
Publisher | IEEE Computer Society |
Pages | 2926-2934 |
Number of pages | 9 |
ISBN (Electronic) | 9781728193601 |
DOIs | |
State | Published - Jun 2020 |
Externally published | Yes |
Event | 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020 - Virtual, Online, United States Duration: 14 Jun 2020 → 19 Jun 2020 |
Publication series
Name | IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops |
---|---|
Volume | 2020-June |
ISSN (Print) | 2160-7508 |
ISSN (Electronic) | 2160-7516 |
Conference
Conference | 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020 |
---|---|
Country/Territory | United States |
City | Virtual, Online |
Period | 14/06/20 → 19/06/20 |
Bibliographical note
Publisher Copyright:© 2020 IEEE.