Abstract
Wu and Verdú developed a theory of almost lossless analog compression, where one imposes various regularity conditions on the compressor and the decompressor with the input signal being modelled by a (typically infinite-entropy) stationary stochastic process. In this work we consider all stationary stochastic processes with trajectories in a prescribed set of (bi-)infinite sequences and find uniform lower and upper bounds for certain compression rates in terms of metric mean dimension and mean box dimension. An essential tool is the recent Lindenstrauss-Tsukamoto variational principle expressing metric mean dimension in terms of rate-distortion functions. We obtain also lower bounds on compression rates for a fixed stationary process in terms of the rate-distortion dimension rates and study several examples.
Original language | English |
---|---|
Article number | 9086002 |
Pages (from-to) | 6977-6998 |
Number of pages | 22 |
Journal | IEEE Transactions on Information Theory |
Volume | 66 |
Issue number | 11 |
DOIs | |
State | Published - Nov 2020 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 1963-2012 IEEE.
Funding
Manuscript received July 2, 2019; revised April 17, 2020; accepted April 25, 2020. Date of publication May 4, 2020; date of current version October 21, 2020. The work of Yonatan Gutman was supported in part by the National Science Center, Poland, under Grant 2013/08/A/ST1/00275 and Grant 2016/22/E/ST1/00448. The work of Adam S´piewak was supported by the National Science Center, Poland, under Grant 2016/22/E/ST1/00448. This article was presented in part at the 2019 IEEE International Symposium on Information Theory. (Corresponding author: Yonatan Gutman.) Yonatan Gutman is with the Institute of Mathematics, Polish Academy of Sciences, 00-656 Warszawa, Poland (e-mail: [email protected]).
Funders | Funder number |
---|---|
National Science Center | 2013/08/A/ST1/00275, 2016/22/E/ST1/00448 |
Keywords
- analog signals
- information dimension
- lossless compression
- metric mean dimension