TY - JOUR
T1 - Metallacarbenes from diazoalkanes
T2 - An experimental and computational study of the reaction mechanism
AU - Cohen, Revital
AU - Rybtchinski, Boris
AU - Gandelman, Mark
AU - Rozenberg, Haim
AU - Martin, Jan M.L.
AU - Milstein, David
PY - 2003/5/28
Y1 - 2003/5/28
N2 - PCP ligand (1,3-bis-[(diisopropyl-phosphanyl)-methyl]-benzene), and PCN ligand ({3-[(di-tert-butyl-phosphanyl)-methyl]-benzyl}-diethyl-amine) based rhodium dinitrogen complexes (1 and 2, respectively) react with phenyl diazomethane at room temperature to give PCP and PCN-Rh carbene complexes (3 and 5, respectively). At low temperature (-70 °C), PCP and PCN phenyl diazomethane complexes (4 and 6, respectively) are formed upon addition of phenyl diazomethane to 1 and 2. In these complexes, the diazo moiety is η1 coordinated through the terminal nitrogen atom. Decomposition of complexes 4 and 6 at low temperatures leads only to a relatively small amount of the corresponding carbene complexes, the major products of decomposition being the dinitrogen complexes 1 and 2 and stilbene. This and competition experiments (decomposition of 6 in the presence of 1) suggests that phenyl diazomethane can dissociate under the reaction conditions and attack the metal center through the diazo carbon producing a η1-C bound diazo complex. Computational studies based on a two-layer ONIOM model, using the mPW1 K exchange-correlation functional and a variety of basis sets for PCP based systems, provide mechanistic insight. In the case of less bulky PCP ligand bearing H-substituents on the phosphines, a variety of mechanisms are possible, including both dissociative and nondissociative pathways. On the other hand, in the case of i-Pr substituents, the η1-C bound diazo complex appears to be a critical intermediate for carbene complex formation, in good agreement with the experimental results. Our results and the analysis of reported data suggest that the outcome of the reaction between a diazoalkane and a late transition metal complex can be anticipated considering steric requirements relevant to η1-C diazo complex formation.
AB - PCP ligand (1,3-bis-[(diisopropyl-phosphanyl)-methyl]-benzene), and PCN ligand ({3-[(di-tert-butyl-phosphanyl)-methyl]-benzyl}-diethyl-amine) based rhodium dinitrogen complexes (1 and 2, respectively) react with phenyl diazomethane at room temperature to give PCP and PCN-Rh carbene complexes (3 and 5, respectively). At low temperature (-70 °C), PCP and PCN phenyl diazomethane complexes (4 and 6, respectively) are formed upon addition of phenyl diazomethane to 1 and 2. In these complexes, the diazo moiety is η1 coordinated through the terminal nitrogen atom. Decomposition of complexes 4 and 6 at low temperatures leads only to a relatively small amount of the corresponding carbene complexes, the major products of decomposition being the dinitrogen complexes 1 and 2 and stilbene. This and competition experiments (decomposition of 6 in the presence of 1) suggests that phenyl diazomethane can dissociate under the reaction conditions and attack the metal center through the diazo carbon producing a η1-C bound diazo complex. Computational studies based on a two-layer ONIOM model, using the mPW1 K exchange-correlation functional and a variety of basis sets for PCP based systems, provide mechanistic insight. In the case of less bulky PCP ligand bearing H-substituents on the phosphines, a variety of mechanisms are possible, including both dissociative and nondissociative pathways. On the other hand, in the case of i-Pr substituents, the η1-C bound diazo complex appears to be a critical intermediate for carbene complex formation, in good agreement with the experimental results. Our results and the analysis of reported data suggest that the outcome of the reaction between a diazoalkane and a late transition metal complex can be anticipated considering steric requirements relevant to η1-C diazo complex formation.
UR - http://www.scopus.com/inward/record.url?scp=0038025512&partnerID=8YFLogxK
U2 - 10.1021/ja028923c
DO - 10.1021/ja028923c
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 12785793
AN - SCOPUS:0038025512
SN - 0002-7863
VL - 125
SP - 6532
EP - 6546
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 21
ER -