Metal Nanoparticle/Photosystem I Protein Hybrids Coupled to Microantenna Afford Biologically and Electronically Controlled Localized Surface Plasmon Resonance: Implications for Fast Data Processing

Itai Carmeli, Ibrahim Tanriover, Tirupathi Malavath, Chanoch Carmeli, Moshik Cohen, Yossi Abulafia, Olga Girshevitz, Shachar Richter, Koray Aydin, Zeev Zalevsky

Research output: Contribution to journalArticlepeer-review

Abstract

Localized surface plasmon resonance (LSPR) holds great promise for the next generation of fast nanoscale optoelectronic devices, as silicon-based electronic devices approach fundamental speed and scaling limitations. However, in order to fully exploit the potential of plasmonics, devices and material systems capable of actively controlling and manipulating plasmonic response are essential. Here, we demonstrate active control of the electric field distribution of a microantenna by coupling LSPRs to a photosynthetic protein with outstanding optoelectronic properties and a long-range and efficient exciton transfer ability. The hybrid biosolid state active platform is able to tune and modulate the optical activity of a microplasmonic antenna via the interaction of the bioactive material with plasmon oscillations occurring in the antennae. In addition, we demonstrate that the effect of the coupling can be further enhanced and controlled by an external potential applied to the microantenna photosynthetic hybrid system. The control of the microantenna electric field distribution by an optical active protein opens the path for future fast optical data processing.

Original languageEnglish
Pages (from-to)13668-13676
Number of pages9
JournalACS Applied Nano Materials
Volume6
Issue number14
DOIs
StatePublished - 28 Jul 2023

Bibliographical note

Publisher Copyright:
© 2023 American Chemical Society

Keywords

  • LSPR
  • active materials
  • bio-optoelectronic hybrids
  • nanotechnology
  • photosystem
  • plasmonic microantenna

Fingerprint

Dive into the research topics of 'Metal Nanoparticle/Photosystem I Protein Hybrids Coupled to Microantenna Afford Biologically and Electronically Controlled Localized Surface Plasmon Resonance: Implications for Fast Data Processing'. Together they form a unique fingerprint.

Cite this