TY - JOUR
T1 - Measuring the style of innovative thinking among engineering students
AU - Passig, David
AU - Cohen, Lizi
PY - 2014/1
Y1 - 2014/1
N2 - Background: Many tools have been developed to measure the ability of workers to innovate. However, all of them are based on self-reporting questionnaires, which raises questions about their validity. Purpose: The aim was to develop and validate a tool, called Ideas Generation Implementation (IGI), to objectively measure the style and potential of engineering students in generating innovative technological ideas. The cognitive framework of IGI is based on the Architectural Innovation Model (AIM). Tool description: The IGI tool was designed to measure the level of innovation in generating technological ideas and their potential to be implemented. These variables rely on the definition of innovation as 'creativity, implemented in a high degree of success'. The levels of innovative thinking are based on the AIM and consist of four levels: incremental innovation, modular innovation, architectural innovation and radical innovation. Sample: Sixty experts in technological innovation developed the tool. We checked its face validity and calculated its reliability in a pilot study (kappa = 0.73). Then, 145 undergraduate students were sampled at random from the seven Israeli universities offering engineering programs and asked to complete the questionnaire. Design and methods: We examined the construct validity of the tool by conducting a variance analysis and measuring the correlations between the innovator's style of each student, as suggested by the AIM, and the three subscale factors of creative styles (efficient, conformist and original), as suggested by the Kirton Adaptors and Innovators (KAI) questionnaire. Results: Students with a radical innovator's style inclined more than those with an incremental innovator's style towards the three creative cognitive styles. Students with an architectural innovator's style inclined moderately, but not significantly, towards the three creative styles. Conclusions: The IGI tool objectively measures innovative thinking among students, thus allowing screening of potential employees at an early stage, during their undergraduate studies. The tool was found to be reliable and valid in measuring the style and potential of technological innovation among engineering students.
AB - Background: Many tools have been developed to measure the ability of workers to innovate. However, all of them are based on self-reporting questionnaires, which raises questions about their validity. Purpose: The aim was to develop and validate a tool, called Ideas Generation Implementation (IGI), to objectively measure the style and potential of engineering students in generating innovative technological ideas. The cognitive framework of IGI is based on the Architectural Innovation Model (AIM). Tool description: The IGI tool was designed to measure the level of innovation in generating technological ideas and their potential to be implemented. These variables rely on the definition of innovation as 'creativity, implemented in a high degree of success'. The levels of innovative thinking are based on the AIM and consist of four levels: incremental innovation, modular innovation, architectural innovation and radical innovation. Sample: Sixty experts in technological innovation developed the tool. We checked its face validity and calculated its reliability in a pilot study (kappa = 0.73). Then, 145 undergraduate students were sampled at random from the seven Israeli universities offering engineering programs and asked to complete the questionnaire. Design and methods: We examined the construct validity of the tool by conducting a variance analysis and measuring the correlations between the innovator's style of each student, as suggested by the AIM, and the three subscale factors of creative styles (efficient, conformist and original), as suggested by the Kirton Adaptors and Innovators (KAI) questionnaire. Results: Students with a radical innovator's style inclined more than those with an incremental innovator's style towards the three creative cognitive styles. Students with an architectural innovator's style inclined moderately, but not significantly, towards the three creative styles. Conclusions: The IGI tool objectively measures innovative thinking among students, thus allowing screening of potential employees at an early stage, during their undergraduate studies. The tool was found to be reliable and valid in measuring the style and potential of technological innovation among engineering students.
KW - engineering students
KW - innovation
KW - potential
KW - technology
UR - http://www.scopus.com/inward/record.url?scp=84894644426&partnerID=8YFLogxK
U2 - 10.1080/02635143.2013.878328
DO - 10.1080/02635143.2013.878328
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
SN - 0263-5143
VL - 32
SP - 56
EP - 77
JO - Research in Science and Technological Education
JF - Research in Science and Technological Education
IS - 1
ER -