Abstract
Sound source localization is addressed by a novel Bayesian approach using a data-driven geometric model. The goal is to recover the target function that attaches each acoustic sample, formed by the measured signals, with its corresponding position. The estimation is derived by maximizing the posterior probability of the target function, computed on the basis of acoustic samples from known locations (labelled data) as well as acoustic samples from unknown locations (unlabelled data). To form the posterior probability we use a manifold-based prior, which relies on the geometric structure of the manifold from which the acoustic samples are drawn. The proposed method is shown to be analogous to a recently presented semi-supervised localization approach based on manifold regularization. Simulation results demonstrate the robustness of the method in noisy and reverberant environments.
Original language | English |
---|---|
Title of host publication | 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 6335-6339 |
Number of pages | 5 |
ISBN (Electronic) | 9781479999880 |
DOIs | |
State | Published - 18 May 2016 |
Event | 41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Shanghai, China Duration: 20 Mar 2016 → 25 Mar 2016 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2016-May |
ISSN (Print) | 1520-6149 |
Conference
Conference | 41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 |
---|---|
Country/Territory | China |
City | Shanghai |
Period | 20/03/16 → 25/03/16 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.
Keywords
- kernel function
- manifold regularization
- manifold-based prior
- relative transfer function (RTF)