Managed aquifer recharge with reverse-osmosis desalinated seawater: Modeling the spreading in groundwater using stable water isotopes

Yonatan Ganot, Ran Holtzman, Noam Weisbrod, Anat Bernstein, Hagar Siebner, Yoram Katz, Daniel Kurtzman

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


The spreading of reverse-osmosis desalinated seawater (DSW) in the Israeli coastal aquifer was studied using groundwater modeling and stable water isotopes as tracers. The DSW produced at the Hadera seawater reverse-osmosis (SWRO) desalination plant is recharged into the aquifer through an infiltration pond at the managed aquifer recharge (MAR) site of Menashe, Israel. The distinct difference in isotope composition between DSW (δ18OD1.41 ‰; δ2HD11.34 ‰) and the natural groundwater (δ18OD-4.48‰ to-5.43 ‰; δ2HD-18.41‰ to-22.68 ‰) makes the water isotopes preferable for use as a tracer compared to widely used chemical tracers, such as chloride. Moreover, this distinct difference can be used to simplify the system to a binary mixture of two end-members: desalinated seawater and groundwater. This approach is validated through a sensitivity analysis, and it is especially robust when spatial data of stable water isotopes in the aquifer are scarce. A calibrated groundwater flow and transport model was used to predict the DSW plume distribution in the aquifer after 50 years of MAR with DSW. The results suggest that after 50 years, 94% of the recharged DSW was recovered by the production wells at the Menashe MAR site. The presented methodology is useful for predicting the distribution of reverse-osmosis desalinated seawater in various downstream groundwater systems.

Original languageEnglish
Pages (from-to)6323-6333
Number of pages11
JournalHydrology and Earth System Sciences
Issue number12
StatePublished - 6 Dec 2018
Externally publishedYes

Bibliographical note

Publisher Copyright:
© Author(s) 2018.


Acknowledgements. The research leading to these results received funding from the joint German–Israeli water technology research program BMBF–MOST, project WT1401. We thank Amos Russak and Raz Studny (Ben-Gurion University) for sampling and analysis assistance.

FundersFunder number
Bundesministerium für Bildung und Forschung
Ministry of Science and TechnologyWT1401


    Dive into the research topics of 'Managed aquifer recharge with reverse-osmosis desalinated seawater: Modeling the spreading in groundwater using stable water isotopes'. Together they form a unique fingerprint.

    Cite this