Majorana-Weyl cones in ferroelectric superconductors

Hennadii Yerzhakov, Roni Ilan, Efrat Shimshoni, Jonathan Ruhman

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


Topological superconductors are predicted to exhibit outstanding phenomena, including non-Abelian anyon excitations, heat-carrying edge states, and topological nodes in the Bogoliubov spectra. Nonetheless, and despite major experimental efforts, we are still lacking unambiguous signatures of such exotic phenomena. In this context, the recent discovery of coexisting superconductivity and ferroelectricity in lightly doped and ultraclean SrTiO3 opens new opportunities. Indeed, a promising route to engineer topological superconductivity is the combination of strong spin-orbit coupling and inversion-symmetry breaking. Here we study a three-dimensional parabolic band minimum with Rashba spin-orbit coupling, whose axis is aligned by the direction of a ferroelectric moment. We show that all of the aforementioned phenomena naturally emerge in this model when a magnetic field is applied. Above a critical Zeeman field, Majorana-Weyl cones emerge regardless of the electronic density. These cones manifest themselves as Majorana arc states appearing on surfaces and tetragonal domain walls. Rotating the magnetic field with respect to the direction of the ferroelectric moment tilts the Majorana-Weyl cones, eventually driving them into the type-II state with Bogoliubov Fermi surfaces. We then consider the consequences of the orbital magnetic field. First, the single vortex is found to be surrounded by a topological halo and is characterized by two Majorana zero modes: one localized in the vortex core and the other on the boundary of the topological halo. Based on a semiclassical argument we show that upon increasing the field above a critical value the halos overlap and eventually percolate through the system, causing a bulk topological transition that always precedes the normal state. Finally, we propose concrete experiments to test our predictions.

Original languageEnglish
Article number013178
JournalPhysical Review Research
Issue number1
StatePublished - Jan 2023

Bibliographical note

Funding Information:
We gratefully acknowledge helpful discussions with S. Stemmer, M. Gastiasoro, V. Kozii, and R. Fernandes. E.S. thanks the US-Israel Binational Science Foundation for finanical support through Awards No. 2016130 and No. 2018726, and by the Israel Science Foundation (ISF) Grant No. 993/19. J.R. acknowledges funding by the Israel Science Foundation under Grant No. 3467/21. R.I. is supported by the Israel Science Foundation under Grant No. 1790/18.

Publisher Copyright:
© 2023 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.


Dive into the research topics of 'Majorana-Weyl cones in ferroelectric superconductors'. Together they form a unique fingerprint.

Cite this