Machine learning for prediction of 30-day mortality after ST elevation myocardial infraction: An Acute Coronary Syndrome Israeli Survey data mining study

Roni Shouval, Amir Hadanny, Nir Shlomo, Zaza Iakobishvili, Ron Unger, Doron Zahger, Ronny Alcalai, Shaul Atar, Shmuel Gottlieb, Shlomi Matetzky, Ilan Goldenberg, Roy Beigel

Research output: Contribution to journalArticlepeer-review

81 Scopus citations

Abstract

Background Risk scores for prediction of mortality 30-days following a ST-segment elevation myocardial infarction (STEMI) have been developed using a conventional statistical approach. Objective To evaluate an array of machine learning (ML) algorithms for prediction of mortality at 30-days in STEMI patients and to compare these to the conventional validated risk scores. Methods This was a retrospective, supervised learning, data mining study. Out of a cohort of 13,422 patients from the Acute Coronary Syndrome Israeli Survey (ACSIS) registry, 2782 patients fulfilled inclusion criteria and 54 variables were considered. Prediction models for overall mortality 30 days after STEMI were developed using 6 ML algorithms. Models were compared to each other and to the Global Registry of Acute Coronary Events (GRACE) and Thrombolysis In Myocardial Infarction (TIMI) scores. Results Depending on the algorithm, using all available variables, prediction models' performance measured in an area under the receiver operating characteristic curve (AUC) ranged from 0.64 to 0.91. The best models performed similarly to the Global Registry of Acute Coronary Events (GRACE) score (0.87 SD 0.06) and outperformed the Thrombolysis In Myocardial Infarction (TIMI) score (0.82 SD 0.06, p < 0.05). Performance of most algorithms plateaued when introduced with 15 variables. Among the top predictors were creatinine, Killip class on admission, blood pressure, glucose level, and age. Conclusions We present a data mining approach for prediction of mortality post-ST-segment elevation myocardial infarction. The algorithms selected showed competence in prediction across an increasing number of variables. ML may be used for outcome prediction in complex cardiology settings.

Original languageEnglish
Pages (from-to)7-13
Number of pages7
JournalInternational Journal of Cardiology
Volume246
DOIs
StatePublished - 1 Nov 2017

Bibliographical note

Publisher Copyright:
© 2017 Elsevier Ireland Ltd

Keywords

  • Data mining
  • Machine learning
  • Mortality
  • Outcome
  • STEMI

Fingerprint

Dive into the research topics of 'Machine learning for prediction of 30-day mortality after ST elevation myocardial infraction: An Acute Coronary Syndrome Israeli Survey data mining study'. Together they form a unique fingerprint.

Cite this