Machine learning can identify newly diagnosed patients with CLL at high risk of infection

Rudi Agius, Christian Brieghel, Michael A. Andersen, Alexander T. Pearson, Bruno Ledergerber, Alessandro Cozzi-Lepri, Yoram Louzoun, Christen L. Andersen, Jacob Bergstedt, Jakob H. von Stemann, Mette Jørgensen, Man Hung Eric Tang, Magnus Fontes, Jasmin Bahlo, Carmen D. Herling, Michael Hallek, Jens Lundgren, Cameron Ross MacPherson, Jan Larsen, Carsten U. Niemann

Research output: Contribution to journalArticlepeer-review

97 Scopus citations

Abstract

Infections have become the major cause of morbidity and mortality among patients with chronic lymphocytic leukemia (CLL) due to immune dysfunction and cytotoxic CLL treatment. Yet, predictive models for infection are missing. In this work, we develop the CLL Treatment-Infection Model (CLL-TIM) that identifies patients at risk of infection or CLL treatment within 2 years of diagnosis as validated on both internal and external cohorts. CLL-TIM is an ensemble algorithm composed of 28 machine learning algorithms based on data from 4,149 patients with CLL. The model is capable of dealing with heterogeneous data, including the high rates of missing data to be expected in the real-world setting, with a precision of 72% and a recall of 75%. To address concerns regarding the use of complex machine learning algorithms in the clinic, for each patient with CLL, CLL-TIM provides explainable predictions through uncertainty estimates and personalized risk factors.

Original languageEnglish
Article number363
JournalNature Communications
Volume11
Issue number1
DOIs
StatePublished - 1 Dec 2020

Bibliographical note

Publisher Copyright:
© 2020, The Author(s).

Funding

This work is in part supported by funding from the Novo Nordisk Foundation, grant NNF16OC0019302 and the Danish National Research Foundation grant 126. This work was initiated during a Modeling Immune System and Pathogen Camp (MispCamp). The authors thank the Danish hematology centers that participated with data submission to the Danish National CLL Registry. The following physicians contributed to data collection and represent the Danish Hematology centers participating in the Danish National CLL Registry: Christian Hartmann Geisler, Lisbeth Enggaard, Christian Bjørn Poulsen, Peter de Nully Brown, Henrik Frederiksen, Olav Jonas Bergmann, Elisa Jacobsen Pulczynski, Robert Schou Pedersen, Ilse Christiansen, and Linda Højberg Nielsen. C.N. has received consultancy fees and/or travel grants from Janssen, Abbvie, Novartis, Roche, Gilead, Sunesis, Acerta, AstraZeneca, and CSL Behring, research support from Abbvie, AstraZeneca, and Janssen, outside this project. C.D.H. received research funding and travel support from Roche. The other authors declare no competing interests.

FundersFunder number
National Institute of Dental and Craniofacial ResearchK08DE026500
AstraZeneca
Novartis
Roche
Gilead Sciences
AbbVie
CSL Behring
Janssen Pharmaceuticals
Danmarks Grundforskningsfond126
Novo Nordisk FondenNNF16OC0019302

    Fingerprint

    Dive into the research topics of 'Machine learning can identify newly diagnosed patients with CLL at high risk of infection'. Together they form a unique fingerprint.

    Cite this