M-free abelian groups

Manfred Dugas, Shalom Feigelstock, Jutta Hausen

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We study M-free abelian groups with M-basis X, i.e., each map f : X → M extends uniquely to a homomorphism φ : A → M. We will find conditions under which X generates a direct summand of A.

Original languageEnglish
Pages (from-to)1367-1382
Number of pages16
JournalRocky Mountain Journal of Mathematics
Volume32
Issue number4
DOIs
StatePublished - 2002

Fingerprint

Dive into the research topics of 'M-free abelian groups'. Together they form a unique fingerprint.

Cite this