Méthodes de data mining pour l'analyse d'approximations numériques: Le cas de solutions asymptotiques des équations de Vlasov-Maxwell

Translated title of the contribution: Data mining techniques for numerical approximations analysis: A test case of asymptotic solutions to the Vlasov-Maxwell equations

Franck Assous, Joel Chaskalovic

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

We propose a novel approach that consists in using data mining techniques to perform a sensitivity analysis of approximate models. We give here the example of asymptotic solutions to Vlasov-Maxwell equations, obtained with a paraxial model for relativistic short beams. This new heuristic approach offers new potential applications to treat numerical solutions to mathematical models.

Translated title of the contributionData mining techniques for numerical approximations analysis: A test case of asymptotic solutions to the Vlasov-Maxwell equations
Original languageFrench
Pages (from-to)305-310
Number of pages6
JournalComptes Rendus - Mecanique
Volume338
Issue number6
DOIs
StatePublished - Jun 2010

Keywords

  • Computer science
  • Data mining
  • Vlasov-Maxwell equations

Fingerprint

Dive into the research topics of 'Data mining techniques for numerical approximations analysis: A test case of asymptotic solutions to the Vlasov-Maxwell equations'. Together they form a unique fingerprint.

Cite this