Lyso-DGTS Lipid Derivatives Enhance PON1 Activities and Prevent Oxidation of LDL: A Structure–Activity Relationship Study

Ali Khattib, Sanaa Musa, Majdi Halabi, Tony Hayek, Soliman Khatib

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Paraoxonase 1 (PON1) plays a role in regulating reverse cholesterol transport and has antioxidative, anti-inflammatory, antiapoptotic, vasodilative, and antithrombotic activities. Scientists are currently focused on the modulation of PON1 expression using different pharmacological, nutritional, and lifestyle approaches. We previously isolated a novel active compound from Nannochloropsis microalgae—lyso-diacylglyceryltrimethylhomoserine (lyso-DGTS)—which increased PON1 activity, HDL-cholesterol efflux, and endothelial nitric oxide release. Here, to explore this important lipid moiety’s effect on PON1 activities, we examined the effect of synthesized lipid derivatives and endogenous analogs of lyso-DGTS on PON1 lactonase and arylesterase activities and LDL oxidation using structure–activity relationship (SAR) methods. Six lipids significantly elevated recombinant PON1 (rePON1) lactonase activity in a dose-dependent manner, and four lipids significantly increased rePON1 arylesterase activity. Using tryptophan fluorescence-quenching assay and a molecular docking method, lipid–PON1 interactions were characterized. An inverse correlation was obtained between the lactonase activity of PON1 and the docking energy of the lipid–PON1 complex. Furthermore, five of the lipids increased the LDL oxidation lag time and inhibited its propagation. Our findings suggest a beneficial effect of lyso-DGTS or lyso-DGTS derivatives through increased PON1 activity and prevention of LDL oxidation.

Original languageEnglish
Article number2058
JournalAntioxidants
Volume11
Issue number10
DOIs
StatePublished - 19 Oct 2022
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2022 by the authors.

Keywords

  • LDL oxidation
  • antioxidant activities
  • docking
  • lyso-DGTS
  • paraoxonase 1
  • structure-activity relationship

Fingerprint

Dive into the research topics of 'Lyso-DGTS Lipid Derivatives Enhance PON1 Activities and Prevent Oxidation of LDL: A Structure–Activity Relationship Study'. Together they form a unique fingerprint.

Cite this