Abstract
Many environmental stimuli contain temporal regularities, a feature that can help predict forthcoming input. Phase locking (entrainment) of ongoing low-frequency neuronal oscillations to rhythmic stimuli is proposed as a potential mechanism for enhancing neuronal responses and perceptual sensitivity, by aligning high-excitability phases to events within a stimulus stream. Previous experiments show that rhythmic structure has a behavioral benefit even when the rhythm itself is below perceptual detection thresholds (ten Oever et al., 2014). It is not known whether this “inaudible” rhythmic sound stream also induces entrainment. Here we tested this hypothesis using magnetoencephalography and electrocorticography in humans to record changes in neuronal activity as subthreshold rhythmic stimuli gradually became audible. We found that significant phase locking to the rhythmic sounds preceded participants’ detection of them. Moreover, no significant auditory-evoked responses accompanied this prethreshold entrainment. These auditory-evoked responses, distinguished by robust, broad-band increases in intertrial coherence, only appeared after sounds were reported as audible. Taken together with the reduced perceptual thresholds observed for rhythmic sequences, these findings support the proposition that entrainment of low-frequency oscillations serves a mechanistic role in enhancing perceptual sensitivity for temporally predictive sounds. This framework has broad implications for understanding the neural mechanisms involved in generating temporal predictions and their relevance for perception, attention, and awareness.
Original language | English |
---|---|
Pages (from-to) | 4903-4912 |
Number of pages | 10 |
Journal | Journal of Neuroscience |
Volume | 37 |
Issue number | 19 |
DOIs | |
State | Published - 10 May 2017 |
Bibliographical note
Publisher Copyright:© 2017 the authors.
Funding
This study was supported by Dutch Organization for Scientific Research Grant 406-11-068; the I-CORE Program of the Planning and Budgeting Committee; Israel Science Foundation Grant 51/11; NIH Grants MH103814, EY024776, and R01DC05660; Swiss National Science Foundation Grant 148388; and the Page and Otto Marx Jr. Foundation.
Funders | Funder number |
---|---|
Page and Otto Marx Jr | |
National Institutes of Health | MH103814, R01DC05660 |
National Eye Institute | R21EY024776 |
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung | 148388 |
Nederlandse Organisatie voor Wetenschappelijk Onderzoek | 406-11-068 |
Israel Science Foundation | 51/11 |
Planning and Budgeting Committee of the Council for Higher Education of Israel |
Keywords
- Auditory
- Detection
- ECoG
- Entrainment
- MEG
- Oscillations