Low-energy laser irradiation promotes cellular redox activity

Rachel Lubart, Maor Eichler, Ronit Lavi, Harry Friedman, Asher Shainberg

Research output: Contribution to journalReview articlepeer-review

205 Scopus citations


Low-energy visible light (LEVL) has been shown to stimulate cell functions. This is called "photobiostimulation" and has been used successfully over the last three decades for treating a range of conditions, including soft tissue injuries, severe wounds, chronic pain, and more. Nevertheless, the mechanism of photobiostimulative processes is still being debated. It is obvious that, in order to interact with the living cell, light has to be absorbed by intracellular chromophores. In a search for chromophores responsible for photobiostimulation, endogenous porphyrins, mitochondrial and membranal cytochromes, and flavoproteins were found to be suitable candidates. The above-mentioned chromophores are photosensitizers that generate reactive oxygen species (ROS) following irradiation. As the cellular redox state has a key role in maintaining the viability of the cell, changes in ROS may play a significant role in cell activation. In the present review, we summarize evidence demonstrating that various ROS and antioxidants are produced following LEVL illumination. We found that very little evidence for NO formation in illuminated non-vascular smooth muscle cells exists in the literature. We suggest that the change in the cellular redox state which plays a pivotal role in maintaining cellular activities leads to photobiostimulative processes.

Original languageEnglish
Pages (from-to)3-9
Number of pages7
JournalPhotomedicine and Laser Surgery
Issue number1
StatePublished - Feb 2005


Dive into the research topics of 'Low-energy laser irradiation promotes cellular redox activity'. Together they form a unique fingerprint.

Cite this