TY - JOUR
T1 - Low-concentration series in general dimension
AU - Adler, Joan
AU - Meir, Yigal
AU - Aharony, Amnon
AU - Harris, A. B.
AU - Klein, Lior
PY - 1990/2
Y1 - 1990/2
N2 - We discuss recent work on the development and analysis of low-concentration series. For many models, the recent breakthrough in the extremely efficient no- free-end method of series generation facilitates the derivation of 15th-order series for multiple moments in general dimension. The 15th-order series have been obtained for lattice animals, percolation, and the Edwards-Anderson Ising spin glass. In the latter cases multiple moments have been found. From complete graph tables through to 13th order, general dimension 13th-order series have been derived for the resistive susceptibility, the moments of the logarithms of the distribution of currents in resistor networks, and the average transmission coefficient in the quantum percolation problem, 11th-order series have been found for several other systems, including the crossover from animals to percolation, the full resistance distribution, nonlinear resistive susceptibility and current distribution in dilute resistor networks, diffusion on percolation clusters, the dilute Ising model, dilute antiferromagnet in a field, and random field Ising model and self-avoiding walks on percolation clusters. Series for the dilute spin-1/2 quantum Heisenberg ferromagnet are in the process of development. Analysis of these series gives estimates for critical thresholds, amplitude ratios, and critical exponents for all dimensions. Where comparisons are possible, our series results are in good agreement with both ε-expansion results near the upper critical dimension and with exact results (when available) in low dimensions, and are competitive with other numerical approaches in intermediate realistic dimensions.
AB - We discuss recent work on the development and analysis of low-concentration series. For many models, the recent breakthrough in the extremely efficient no- free-end method of series generation facilitates the derivation of 15th-order series for multiple moments in general dimension. The 15th-order series have been obtained for lattice animals, percolation, and the Edwards-Anderson Ising spin glass. In the latter cases multiple moments have been found. From complete graph tables through to 13th order, general dimension 13th-order series have been derived for the resistive susceptibility, the moments of the logarithms of the distribution of currents in resistor networks, and the average transmission coefficient in the quantum percolation problem, 11th-order series have been found for several other systems, including the crossover from animals to percolation, the full resistance distribution, nonlinear resistive susceptibility and current distribution in dilute resistor networks, diffusion on percolation clusters, the dilute Ising model, dilute antiferromagnet in a field, and random field Ising model and self-avoiding walks on percolation clusters. Series for the dilute spin-1/2 quantum Heisenberg ferromagnet are in the process of development. Analysis of these series gives estimates for critical thresholds, amplitude ratios, and critical exponents for all dimensions. Where comparisons are possible, our series results are in good agreement with both ε-expansion results near the upper critical dimension and with exact results (when available) in low dimensions, and are competitive with other numerical approaches in intermediate realistic dimensions.
KW - Series expansion
KW - percolation
UR - http://www.scopus.com/inward/record.url?scp=33750182682&partnerID=8YFLogxK
U2 - 10.1007/bf01112760
DO - 10.1007/bf01112760
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:33750182682
SN - 0022-4715
VL - 58
SP - 511
EP - 538
JO - Journal of Statistical Physics
JF - Journal of Statistical Physics
IS - 3-4
ER -