Locally Sparse Neural Networks for Tabular Biomedical Data

Junchen Yang, Ofir Lindenbaum, Yuval Kluger

Research output: Contribution to journalConference articlepeer-review

21 Scopus citations

Abstract

Tabular datasets with low-sample-size or many variables are prevalent in biomedicine. Practitioners in this domain prefer linear or tree-based models over neural networks since the latter are harder to interpret and tend to overfit when applied to tabular datasets. To address these neural networks' shortcomings, we propose an intrinsically interpretable network for heterogeneous biomedical data. We design a locally sparse neural network where the local sparsity is learned to identify the subset of most relevant features for each sample. This sample-specific sparsity is predicted via a gating network, which is trained in tandem with the prediction network. By forcing the model to select a subset of the most informative features for each sample, we reduce model overfitting in low-sample-size data and obtain an interpretable model. We demonstrate that our method outperforms state-of-the-art models when applied to synthetic or real-world biomedical datasets using extensive experiments. Furthermore, the proposed framework dramatically outperforms existing schemes when evaluating its interpretability capabilities. Finally, we demonstrate the applicability of our model to two important biomedical tasks: survival analysis and marker gene identification.

Original languageEnglish
Pages (from-to)25123-25153
Number of pages31
JournalProceedings of Machine Learning Research
Volume162
StatePublished - 2022
Event39th International Conference on Machine Learning, ICML 2022 - Baltimore, United States
Duration: 17 Jul 202223 Jul 2022

Bibliographical note

Publisher Copyright:
Copyright © 2022 by the author(s)

Funding

The authors thank Mihir Khunte and Michal Marczyk for the preprocessing steps of the SEER breast cancer data, Le Zhang, Serena Spudich, and Mark Gerstein for providing the snRNA-seq data. Y.K. acknowledges support by NIH grant R01GM131642, UM1DA051410, U54AG076043, P50CA121974, and U01DA053628.

FundersFunder number
NIH
National Institutes of HealthU54AG076043, UM1DA051410, P50CA121974, R01GM131642, U01DA053628

    Fingerprint

    Dive into the research topics of 'Locally Sparse Neural Networks for Tabular Biomedical Data'. Together they form a unique fingerprint.

    Cite this