Lipid composition affects the rate of photosensitized dissipation of cross-membrane diffusion potential on liposomes

Shany Ytzhak, Joseph P. Wuskell, Leslie M. Loew, Benjamin Ehrenberg

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Hydrophobic or amphiphilic tetrapyrrole sensitizers are taken up by cells and are usually located in cellular lipid membranes. Singlet oxygen is photogenerated by the sensitizer, and it diffuses in the membrane and causes oxidative damage to membrane components. This damage can occur to membrane lipids and to membrane-localized proteins. Depolarization of the Nernst electric potential on cells' membranes has been observed in cellular photosensitization, but it was not established whether lipid oxidation is a relevant factor leading to abolishing the resting potential of cells' membranes and to their death. In this work, we studied the effect of liposomes lipid composition on the kinetics of hematoporphyrin-photosensitized dissipation of K+-diffusion electric potential that was generated across the membranes. We employed an electrochromic voltage-sensitive spectroscopic probe that possesses a high fluorescence signal response to the potential. We found a correlation between the structure and unsaturation of lipids and the leakage of the membrane, following photosensitization. As the extent of nonconjugated unsaturation of the lipids is increased from 1 to 6 double bonds, the kinetics of depolarization become faster. We also found that the kinetics of depolarization is affected by the percentage of the unsaturated lipids in the liposome: as the fraction of the unsaturated lipids increases, the leakage through the membrane is enhanced. When liposomes are composed of a lipid mixture similar to that of natural membranes and photosensitization is being carried out under usual photodynamic therapy (PDT) conditions, photodamage to the lipids is not likely to cause enhanced permeability of ions through the membrane, which would have been a mechanism that leads to cell death.

Original languageEnglish
Pages (from-to)10097-10104
Number of pages8
JournalJournal of Physical Chemistry B
Volume114
Issue number31
DOIs
StatePublished - 12 Aug 2010

Fingerprint

Dive into the research topics of 'Lipid composition affects the rate of photosensitized dissipation of cross-membrane diffusion potential on liposomes'. Together they form a unique fingerprint.

Cite this