Abstract
Motivated by recent experimental observations of power-law statistics both in spectral diffusion process and fluorescence intermittency of individual semiconductor nanocrystals (quantum dots), we consider two different but related problems: (a) a stochastic lineshape theory for the Kubo-Anderson oscillator whose frequency modulation follows power-law statistics and (b) photon counting statistics of quantum dots whose intensity fluctuation is characterized by power-law kinetics. In the first problem, we derive an analytical expression for the lineshape formula and find rich type of behaviors when compared with the standard theory. For example, new type of resonances and narrowing behavior have been found. We show that the lineshape is extremely sensitive to the way the system is prepared at time t = 0 and discuss the problem of stationarity. In the second problem, we use semiclassical photon counting statistics to characterize the fluctuation of the photon counts emitted from quantum dots. We show that the photon counting statistics problem can be mapped onto a Lévy walk process. We find unusually large fluctuations in the photon counts that have not been encountered previously. In particular, we show that Mandel's Q parameter may increase in time even in the long time limit.
Original language | English |
---|---|
Pages (from-to) | 181-194 |
Number of pages | 14 |
Journal | Chemical Physics |
Volume | 284 |
Issue number | 1-2 |
DOIs | |
State | Published - 1 Nov 2002 |
Externally published | Yes |
Bibliographical note
Funding Information:This work was supported by NSF. YJ and EB thank Ken Shimizu and Moungi G. Bawendi for useful discussions and Jean-Philippe Bouchaud for pointing out Ref. [49] .