Level of neo-epitope predecessor and mutation type determine T cell activation of MHC binding peptides

Hanan Besser, Sharon Yunger, Efrat Merhavi-Shoham, Cyrille J. Cohen, Yoram Louzoun

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Background: Targeting epitopes derived from neo-antigens (or "neo-epitopes") represents a promising immunotherapy approach with limited off-target effects. However, most peptides predicted using MHC binding prediction algorithms do not induce a CD8 + T cell response, and there is a crucial need to refine the predictions to readily identify the best antigens that could mediate T-cell responses. Such a response requires a high enough number of epitopes bound to the target MHC. This number is correlated with both the peptide-MHC binding affinity and the number of peptides reaching the ER. Beyond this, the response may be affected by the properties of the neo-epitope mutated residues. Methods: Herein, we analyzed several experimental datasets from cancer patients to elaborate better predictive algorithms for T-cell reactivity to neo-epitopes. Results: Indeed, potent classifiers for epitopes derived from neo-antigens in melanoma and other tumors can be developed based on biochemical properties of the mutated residue, the antigen expression level and the peptide processing stage. Among MHC binding peptides, the present classifiers can remove half of the peptides falsely predicted to activate T cells while maintaining the absolute majority of reactive peptides. Conclusions: The classifier properties further highlight the contribution of the quantity of peptides reaching the ER and the mutation type to CD8 + T cell responses. These classifiers were then validated on neo-antigens obtained from other datasets, confirming the validity of our prediction. Algorithm Availability: http://peptibase.cs.biu.ac.il/Tcell-predictor/ or by request from the authors as a standalone code.

Original languageEnglish
Article number135
JournalJournal for ImmunoTherapy of Cancer
Volume7
Issue number1
DOIs
StatePublished - 22 May 2019

Bibliographical note

Publisher Copyright:
© 2019 The Author(s).

Keywords

  • MHC-binding peptides
  • Machine Learning
  • Neoantigen
  • T cell activation

Fingerprint

Dive into the research topics of 'Level of neo-epitope predecessor and mutation type determine T cell activation of MHC binding peptides'. Together they form a unique fingerprint.

Cite this