Length realizability for pairs of quasi-commuting matrices

A. E. Guterman, O. V. Markova, V. Mehrmann

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


For the pairs of quasi-commuting matrices we completely characterize natural numbers that can be realized as the lengths of these pairs of generators.

Original languageEnglish
Pages (from-to)135-154
Number of pages20
JournalLinear Algebra and Its Applications
StatePublished - 1 May 2019
Externally publishedYes

Bibliographical note

Funding Information:
The investigations of the first and the second authors are supported by Russian Science Foundation, Project 17-11-01124.The third author is supported by Einstein Foundation Berlin via Project ‘Algorithmische Lineare Algebra: Hochleistungsrechnen, Numerische Stabilität and Fehlertoleranz’.

Publisher Copyright:
© 2018 Elsevier Inc.


  • Finite-dimensional algebras
  • Lengths of sets and algebras
  • Quasi-commuting matrices


Dive into the research topics of 'Length realizability for pairs of quasi-commuting matrices'. Together they form a unique fingerprint.

Cite this