Abstract
Training agents to control a dynamic environment is a fundamental task in AI. In many environments, the dynamics can be summarized by a small set of events that capture the semantic behavior of the system. Typically, these events form chains or cascades. We often wish to change the system behavior using a single intervention that propagates through the cascade. For instance, one may trigger a biochemical cascade to switch the state of a cell or, in logistics, reroute a truck to meet an unexpected, urgent delivery. We introduce a new supervised learning setup called Cascade. An agent observes a system with known dynamics evolving from some initial state. The agent is given a structured semantic instruction and needs to make an intervention that triggers a cascade of events, such that the system reaches an alternative (counterfactual) behavior. We provide a test-bed for this problem, consisting of physical objects. We combine semantic tree search with an event-driven forward model and devise an algorithm that learns to efficiently search in exponentially large semantic trees. We demonstrate that our approach learns to follow instructions to intervene in new complex scenes. When provided with an observed cascade of events, it can also reason about alternative outcomes.
Original language | English |
---|---|
Pages (from-to) | 1218-1243 |
Number of pages | 26 |
Journal | Proceedings of Machine Learning Research |
Volume | 202 |
State | Published - 2023 |
Event | 40th International Conference on Machine Learning, ICML 2023 - Honolulu, United States Duration: 23 Jul 2023 → 29 Jul 2023 |
Bibliographical note
Publisher Copyright:© 2023 Proceedings of Machine Learning Research. All rights reserved.