LEARNING THE PARETO FRONT WITH HYPERNETWORKS

Aviv Navon, Aviv Shamsian, Ethan Fetaya, Gal Chechik

Research output: Contribution to conferencePaperpeer-review

42 Scopus citations

Abstract

Multi-objective optimization (MOO) problems are prevalent in machine learning. These problems have a set of optimal solutions, called the Pareto front, where each point on the front represents a different trade-off between possibly conflicting objectives. Recent MOO methods can target a specific desired ray in loss space however, most approaches still face two grave limitations: (i) A separate model has to be trained for each point on the front; and (ii) The exact trade-off must be known before the optimization process. Here, we tackle the problem of learning the entire Pareto front, with the capability of selecting a desired operating point on the front after training. We call this new setup Pareto-Front Learning (PFL). We describe an approach to PFL implemented using HyperNetworks, which we term Pareto HyperNetworks (PHNs). PHN learns the entire Pareto front simultaneously using a single hypernetwork, which receives as input a desired preference vector and returns a Pareto-optimal model whose loss vector is in the desired ray. The unified model is runtime efficient compared to training multiple models and generalizes to new operating points not used during training. We evaluate our method on a wide set of problems, from multi-task regression and classification to fairness. PHNs learn the entire Pareto front at roughly the same time as learning a single point on the front and at the same time reach a better solution set. PFL opens the door to new applications where models are selected based on preferences that are only available at run time.

Original languageEnglish
StatePublished - 2021
Event9th International Conference on Learning Representations, ICLR 2021 - Virtual, Online
Duration: 3 May 20217 May 2021

Conference

Conference9th International Conference on Learning Representations, ICLR 2021
CityVirtual, Online
Period3/05/217/05/21

Bibliographical note

Publisher Copyright:
© 2021 ICLR 2021 - 9th International Conference on Learning Representations. All rights reserved.

Funding

This study was funded by a grant to GC from the Israel Science Foundation (ISF 737/2018), and by an equipment grant to GC and Bar-Ilan University from the Israel Science Foundation (ISF 2332/18). AS and AN were funded by a grant from the Israeli Innovation Authority, through the AVATAR consortium.

FundersFunder number
Israeli Innovation Authority
Israel Science FoundationISF 2332/18, ISF 737/2018

    Fingerprint

    Dive into the research topics of 'LEARNING THE PARETO FRONT WITH HYPERNETWORKS'. Together they form a unique fingerprint.

    Cite this