Learning-based Synthesis of Social Laws in STRIPS

Ronen Nir, Alexander Shleyfman, Erez Karpas

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

In a multi-agent environment, each agent must take into account not only the actions it must perform to achieve its goals, but also the behavior of other agents in the system, which usually requires some sort of coordination between the agents. One way to avoid the complexity of centralized planning and online negotiation between agents is to design an artificial social system. This system enacts a social law that restricts the behavior of the agents. A robust social law enables the agents to reach their goals while keeping them from interfering with each other. However, the problem of efficient synthesis of such laws is computationally hard, and previously proposed search techniques do not scale well. In this paper, we propose the use of graph neural networks to predict social laws from a graph-based representation of multi-agent systems. However, as this prediction can be wrong, we use heuristic search to correct possible mistakes in the network’s prediction ensuring that the produced social law is indeed robust. Our empirical evaluation shows that this approach beat the previous state-of-the-art in social law synthesis and that it can learn from an imperfect expert, even in the presence of noise.

Original languageEnglish
Title of host publication14th International Symposium on Combinatorial Search, SoCS 2021
EditorsHang Ma, Ivan Serina
PublisherAssociation for the Advancement of Artificial Intelligence
Pages88-96
Number of pages9
ISBN (Electronic)9781713834557
StatePublished - 2021
Externally publishedYes
Event14th International Symposium on Combinatorial Search, SoCS 2021 - Guangzhou, Virtual, China
Duration: 26 Jul 202130 Jul 2021

Publication series

Name14th International Symposium on Combinatorial Search, SoCS 2021

Conference

Conference14th International Symposium on Combinatorial Search, SoCS 2021
Country/TerritoryChina
CityGuangzhou, Virtual
Period26/07/2130/07/21

Bibliographical note

Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Fingerprint

Dive into the research topics of 'Learning-based Synthesis of Social Laws in STRIPS'. Together they form a unique fingerprint.

Cite this