Abstract
In Federated Learning (FL), multiple clients collaborate to learn a shared model through a central server while keeping data decentralized. Personalized Federated Learning (PFL) further extends FL by learning a personalized model per client. In both FL and PFL, all clients participate in the training process and their labeled data are used for training. However, in reality, novel clients may wish to join a prediction service after it has been deployed, obtaining predictions for their own unlabeled data.Here, we introduce a new learning setup, On-Demand Unlabeled PFL (OD-PFL), where a system trained on a set of clients, needs to be later applied to novel unlabeled clients at inference time. We propose a novel approach to this problem, ODPFL-HN, which learns to produce a new model for the late-to-the-party client. Specifically, we train an encoder network that learns a representation for a client given its unlabeled data. That client representation is fed to a hypernetwork that generates a personalized model for that client. Evaluated on five benchmark datasets, we find that ODPFL-HN generalizes better than the current FL and PFL methods, especially when the novel client has a large shift from training clients.
Original language | English |
---|---|
Title of host publication | Proceedings - 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 2173-2182 |
Number of pages | 10 |
ISBN (Electronic) | 9798350318920 |
DOIs | |
State | Published - 3 Jan 2024 |
Event | 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024 - Waikoloa, United States Duration: 4 Jan 2024 → 8 Jan 2024 |
Publication series
Name | Proceedings - 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024 |
---|
Conference
Conference | 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024 |
---|---|
Country/Territory | United States |
City | Waikoloa |
Period | 4/01/24 → 8/01/24 |
Bibliographical note
Publisher Copyright:© 2024 IEEE.
Keywords
- Algorithms
- Machine learning architectures
- and algorithms
- formulations