LARGE DEVIATIONS FOR INTERACTING DIFFUSIONS WITH PATH-DEPENDENT MCKEAN-VLASOV LIMIT

Rangel Baldasso, Alan Pereira, Guilherme Reis

Research output: Contribution to journalArticlepeer-review

Abstract

We consider a mean-field system of path-dependent stochastic interacting diffusions in random media over a finite time window. The interaction term is given as a function of the empirical measure and is allowed to be nonlinear and path dependent. We prove that the sequence of empirical measures of the full trajectories satisfies a large deviation principle with explicit rate function. The minimizer of the rate function is characterized as the pathdependent McKean-Vlasov diffusion associated to the system. As corollary, we obtain a strong law of large numbers for the sequence of empirical measures. The proof is based on a decoupling technique by associating to the system a convenient family of product measures. To illustrate, we apply our results for the delayed stochastic Kuramoto model and for a SDE version of Galves-Löcherbach model.

Original languageEnglish
Pages (from-to)665-695
Number of pages31
JournalAnnals of Applied Probability
Volume32
Issue number1
DOIs
StatePublished - Feb 2022

Bibliographical note

Publisher Copyright:
© Institute of Mathematical Statistics, 2022.

Funding

Funding. RB is supported by the Israel Science Foundation through grant 575/16 and by the German Israeli Foundation through grant I-1363-304.6/2016. AP was partially supported by Capes/PNPD fellowship 88882.315944/2019-01. GR is supported by a Capes/PNPD fellowship 888887.313738/2019-00. The authors thank IMPA for hospitality and financial support in the early stages of the work.

FundersFunder number
German Israeli Foundation888887.313738/2019-00, 88882.315944/2019-01, I-1363-304.6/2016
Israel Science Foundation575/16

    Keywords

    • McKean-Vlasov diffusions
    • Path-dependent SDEs

    Fingerprint

    Dive into the research topics of 'LARGE DEVIATIONS FOR INTERACTING DIFFUSIONS WITH PATH-DEPENDENT MCKEAN-VLASOV LIMIT'. Together they form a unique fingerprint.

    Cite this