TY - CHAP
T1 - Labeling schemes for weighted dynamic trees (extended abstract)
AU - Korman, Amos
AU - Peleg, David
PY - 2003
Y1 - 2003
N2 - This paper studies β-approximate distance labeling schemes, which are composed of a marker algorithm for labeling the vertices of a graph with short labels, coupled with a decoder algorithm allowing one to compute a β-approximation of the distance between any two vertices directly from their labels (without using any additional information). As most applications for informative labeling schemes in general, and distance labeling schemes in particular, concern large and dynamically changing networks, it is of interest to focus on distributed dynamic labeling schemes. The paper considers the problem on dynamic weighted trees and cycles where the vertices of the tree (or the cycle) are fixed but the (positive integral) weights of the edges may change. The two models considered are the fully dynamic model, where from time to time some edge changes its weight by a fixed quanta, and the increasing dynamic model in which edge weights can only grow. The paper presents distributed β-approximate distance labeling schemes for the two models, for β > 1, and establishes upper and lower bounds on the required label size and the communication complexity involved in updating the labels following a weight change.
AB - This paper studies β-approximate distance labeling schemes, which are composed of a marker algorithm for labeling the vertices of a graph with short labels, coupled with a decoder algorithm allowing one to compute a β-approximation of the distance between any two vertices directly from their labels (without using any additional information). As most applications for informative labeling schemes in general, and distance labeling schemes in particular, concern large and dynamically changing networks, it is of interest to focus on distributed dynamic labeling schemes. The paper considers the problem on dynamic weighted trees and cycles where the vertices of the tree (or the cycle) are fixed but the (positive integral) weights of the edges may change. The two models considered are the fully dynamic model, where from time to time some edge changes its weight by a fixed quanta, and the increasing dynamic model in which edge weights can only grow. The paper presents distributed β-approximate distance labeling schemes for the two models, for β > 1, and establishes upper and lower bounds on the required label size and the communication complexity involved in updating the labels following a weight change.
UR - http://www.scopus.com/inward/record.url?scp=35248896192&partnerID=8YFLogxK
U2 - 10.1007/3-540-45061-0_31
DO - 10.1007/3-540-45061-0_31
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.chapter???
AN - SCOPUS:35248896192
SN - 3540404937
SN - 9783540404934
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 369
EP - 383
BT - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
A2 - Baeten, Jos C. M.
A2 - Lenstra, Jan Karel
A2 - Parrow, Joachim
A2 - Woeginger, Gerhard J.
PB - Springer Verlag
ER -