Abstract
This research compares two two-well (TW) Terahertz Quantum Cascade Lasers (THz QCLs) using non-equilibrium Green's functions (NEGF) in order to understand the discrepancy in their maximum operating temperatures (Tmax). Despite similar designs and simulation findings, the devices show a substantial performance difference. This is connected to variations in interface roughness (IFR) caused by different Molecular Beam Epitaxy (MBE) reactors. Our findings highlight the necessity of accurate MBE growth control for high-performance THz QCLs and propose approaches for interface modification to improve device temperature performance, providing a clearer path to meeting and exceeding current Tmax records.
Original language | English |
---|---|
Title of host publication | 2024 49th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2024 |
Publisher | IEEE Computer Society |
ISBN (Electronic) | 9798350370324 |
DOIs | |
State | Published - 2024 |
Event | 49th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2024 - Perth, Australia Duration: 1 Sep 2024 → 6 Sep 2024 |
Publication series
Name | International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz |
---|---|
ISSN (Print) | 2162-2027 |
ISSN (Electronic) | 2162-2035 |
Conference
Conference | 49th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2024 |
---|---|
Country/Territory | Australia |
City | Perth |
Period | 1/09/24 → 6/09/24 |
Bibliographical note
Publisher Copyright:© 2024 IEEE.
Keywords
- MBE growth
- NEGF
- THz QCLs
- interface roughness