TY - JOUR
T1 - Inverse Laplace transforms of products of Whittaker functions
AU - Beals, Richard
AU - Kannai, Yakar
PY - 2008/4/8
Y1 - 2008/4/8
N2 - Identities of the formW1(z)W2(ζ)=0e- τg(z,ζ,τ)dτare proved. Here W1 is either of the Whittaker functions Wκ,μ or Mκ,μ and W2 is either of Wκ′,μor Mκ ′,-μ. The function g has, piecewise, a form that involves a hypergeometric function of a rational function of z and ζ. These identities make possible the calculation of explicit global propagators for certain singular hyperbolic equations and degenerate hyperbolic equations in two variables of the formx2K-2uyy+λ(k-1)xk-2uy-uxx=0
AB - Identities of the formW1(z)W2(ζ)=0e- τg(z,ζ,τ)dτare proved. Here W1 is either of the Whittaker functions Wκ,μ or Mκ,μ and W2 is either of Wκ′,μor Mκ ′,-μ. The function g has, piecewise, a form that involves a hypergeometric function of a rational function of z and ζ. These identities make possible the calculation of explicit global propagators for certain singular hyperbolic equations and degenerate hyperbolic equations in two variables of the formx2K-2uyy+λ(k-1)xk-2uy-uxx=0
KW - Kummer functions
KW - Laplace transform
KW - Whittaker functions
UR - http://www.scopus.com/inward/record.url?scp=39449134604&partnerID=8YFLogxK
U2 - 10.1098/rspa.2007.0248
DO - 10.1098/rspa.2007.0248
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:39449134604
SN - 1364-5021
VL - 464
SP - 795
EP - 806
JO - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
JF - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
IS - 2092
ER -