Intersection graphs of curves in the plane

G. Ehrlich, S. Even, R. E. Tarjan

Research output: Contribution to journalArticlepeer-review

101 Scopus citations

Abstract

Let V be a set of curves in the plane. The corresponding intersection graph has V as the set of vertices, and two vertices are connected by an edge if and only if the two corresponding curves intersect in the plane. It is shown that the set of intersection graphs of curves in the plane is a proper subset of the set of all undirected graphs. Furthermore, the set of intersection graphs of straight line-segments is a proper subset of the set of the intersection graphs of curves in the plane. Finally, it is shown that for every k ≥ 3, the problem of determining whether an intersection graph of straight line-segments is k-colorable is NP-complete.

Original languageEnglish
Pages (from-to)8-20
Number of pages13
JournalJournal of Combinatorial Theory. Series B
Volume21
Issue number1
DOIs
StatePublished - Aug 1976
Externally publishedYes

Fingerprint

Dive into the research topics of 'Intersection graphs of curves in the plane'. Together they form a unique fingerprint.

Cite this