Interpretable Deep Clustering for Tabular Data

Jonathan Svirsky, Ofir Lindenbaum

Research output: Contribution to journalConference articlepeer-review

Abstract

Clustering is a fundamental learning task widely used as a first step in data analysis. For example, biologists use cluster assignments to analyze genome sequences, medical records, or images. Since downstream analysis is typically performed at the cluster level, practitioners seek reliable and interpretable clustering models. We propose a new deep-learning framework for general domain tabular data that predicts interpretable cluster assignments at the instance and cluster levels. First, we present a self-supervised procedure to identify the subset of the most informative features from each data point. Then, we design a model that predicts cluster assignments and a gate matrix that provides cluster-level feature selection. Overall, our model provides cluster assignments with an indication of the driving feature for each sample and each cluster. We show that the proposed method can reliably predict cluster assignments in biological, text, image, and physics tabular datasets. Furthermore, using previously proposed metrics, we verify that our model leads to interpretable results at a sample and cluster level. Our code is available on Github.

Original languageEnglish
Pages (from-to)47314-47330
Number of pages17
JournalProceedings of Machine Learning Research
Volume235
StatePublished - 2024
Event41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria
Duration: 21 Jul 202427 Jul 2024

Bibliographical note

Publisher Copyright:
Copyright 2024 by the author(s)

Fingerprint

Dive into the research topics of 'Interpretable Deep Clustering for Tabular Data'. Together they form a unique fingerprint.

Cite this