TY - GEN
T1 - Instance-level label propagation with multi-instance learning
AU - Wang, Qifan
AU - Chechik, Gal
AU - Sun, Chen
AU - Shen, Bin
PY - 2017
Y1 - 2017
N2 - Label propagation is a popular semi-supervised learning technique that transfers information from labeled examples to unlabeled examples through a graph. Most label propagation methods construct a graph based on example-to-example similarity, assuming that the resulting graph connects examples that share similar labels. Unfortunately, example-level similarity is sometimes badly defined. For instance, two images may contain two different objects, but have similar overall appearance due to large similar background. In this case, computing similarities based on whole-image would fail propagating information to the right labels. This paper proposes a novel Instance-Level Label Propagation (ILLP) approach that integrates label propagation with multi-instance learning. Each example is treated as containing multiple instances, as in the case of an image consisting of multiple regions. We first construct a graph based on instance-level similarity and then simultaneously identify the instances carrying the labels and propagate the labels across instances in the graph. Optimization is based on an iterative Expectation Maximization (EM) algorithm. Experimental results on two benchmark datasets demonstrate the effectiveness of the proposed approach over several state-of-the-art methods.
AB - Label propagation is a popular semi-supervised learning technique that transfers information from labeled examples to unlabeled examples through a graph. Most label propagation methods construct a graph based on example-to-example similarity, assuming that the resulting graph connects examples that share similar labels. Unfortunately, example-level similarity is sometimes badly defined. For instance, two images may contain two different objects, but have similar overall appearance due to large similar background. In this case, computing similarities based on whole-image would fail propagating information to the right labels. This paper proposes a novel Instance-Level Label Propagation (ILLP) approach that integrates label propagation with multi-instance learning. Each example is treated as containing multiple instances, as in the case of an image consisting of multiple regions. We first construct a graph based on instance-level similarity and then simultaneously identify the instances carrying the labels and propagate the labels across instances in the graph. Optimization is based on an iterative Expectation Maximization (EM) algorithm. Experimental results on two benchmark datasets demonstrate the effectiveness of the proposed approach over several state-of-the-art methods.
UR - http://www.scopus.com/inward/record.url?scp=85031925388&partnerID=8YFLogxK
U2 - 10.24963/ijcai.2017/410
DO - 10.24963/ijcai.2017/410
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85031925388
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 2943
EP - 2949
BT - 26th International Joint Conference on Artificial Intelligence, IJCAI 2017
A2 - Sierra, Carles
PB - International Joint Conferences on Artificial Intelligence
T2 - 26th International Joint Conference on Artificial Intelligence, IJCAI 2017
Y2 - 19 August 2017 through 25 August 2017
ER -